Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (2): 116-125.doi: 10.3724/SP.J.1226.2019.00116.

   

The establishment and development of Haloxylon ammodendron promotes salt accumulation in surface soil of arid sandy land

YongZhong Su(),TingNa Liu,JunQia Kong   

  1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences/Key Laboratory of Eco-Hydrology in Inland River Basin, CAS, Lanzhou, Gansu 730000, China
  • Received:2018-08-27 Accepted:2019-01-10 Online:2019-04-01 Published:2019-04-29
  • Contact: YongZhong Su E-mail:suyzh@lzb.ac.cn
  • About author:Professor YongZhong Su, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences/Key Laboratory of Eco-Hydrology in Inland River Basin, CAS. No. 320, West Donggang Road, Lanzhou, Gansu 730000, China. E-mail: suyzh@lzb.ac.cn

Abstract:

Haloxylon ammodendron, a representative C4 succulent xerophyte and salt-secreting plant, is widely used in vegetation reestablishment programs to stabilize shifting sand, and is one of the dominant shrubs in the shelter belt used to control desertification in the desert-oasis ecotone in northwestern China. In this study, we collected soil samples in an age sequence of 0-, 2-, 5-, 13-, 16-, 31-, and 39-year-old H. ammodendron plantations to assess the effects of the shrub on soil fertility and salinity. Results show that SOC and total N concentrations increased significantly with increasing plantation age and increased 5.95- (in the interspaces) to 9.05-fold (under the canopy) and 6.15- to 8.46-fold at the 0?5 cm depth at the 39-year-old plantation compared with non-vegetated sandy land. Simultaneously, H. ammodendron establishment and development resulted in significant salt accumulation in the surface layer. On average, total soil salt content at the 0?5 cm and 5?20 cm depth increased 16.8-fold and 4.4-fold, respectively, compared with non-vegetated sandy land. The increase of total salt derived mostly from the accumulation of SO 4 2 - , Ca2+ and Na+ with H. ammodendron development. The accumulation in salinity was more significant than the increase in fertility, suggesting that improved soil fertility did not limit the impact of salinization. The adverse effect of salt accumulation may result in H. ammodendron plantation degradation and impact community stability in the long run.

Key words: Haloxylon ammodendron, soil salt and its component, soil organic carbon, plantation chronosequence, sandy land in desert-oasis ecotone

Figure 1

SOC, total N concentrations, and pH in the different H. ammodendron plantation ages. Bars represent standard deviation values; letters within the same sampling location show significant differences at P level <0.05 (LSD)"

Table 1

Soil salt component and electrical conductivity (EC) in H. ammodendron plantations of different establishment age"

Saltion (cmol/kg) Depth(cm) Sampling location Plantation age F value P
0 2 5 9 13 16 31 39
SO 4 2 - 0?5 UC 0.18±0.02 e 0.27±0.02 de 0.47±0.07 de 0.74±0.09 d 0.83±0.03 d 1.79±0.04 c 7.22±0.98 b 14.13±0.38 a 538.4 <0.001
0?5 OC 0.18±0.03 c 0.20±0.03 c 0.37±0.04 c 0.58±0.06 c 0.58±0.05 c 0.65±0.04 c 6.41±0.12 b 14.51±1.10 a 514.6 <0.001
5?20 UC 0.44±0.04 d 0.20±0.03 f 0.37±0.07 de 0.46±0.01 de 0.64±0.03 d 0.92±0.11 c 2.18±0.08 b 3.14±0.28 a 159.8 <0.001
5?20 OC 0.44±0.04 d 0.19±0.03 f 0.33±0.01 de 0.34±0.04 de 0.67±0.05 d 0.99±0.06 c 2.08±0.11 b 2.85±0.35 a 226.9 <0.001
Cl? 0?5 UC 0.45±0.05 d 0.38±0.05 d 0.69±0.05 c 0.79±0.08 c 0.75±0.12 c 0.80±0.11 c 1.02±0.16 b 1.17±0.20 a 15.6 <0.001
0?5 OC 0.45±0.05 bc 0.26±0.03 c 0.40±0.05 bc 0.32±0.03 c 0.46±0.05 bc 0.71±0.07 b 1.25±0.04 a 1.56±0.51 a 20.1 <0.001
5?20 UC 0.23±0.02 d 0.32±0.04 bc 0.39±0.04 c 0.34±0.06 c 0.42±0.07 c 0.27±0.08 b 0.58±0.04 b 0.90±0.13 a 30.8 <0.001
5?20 OC 0.23±0.02 e 0.29±0.02 de 0.24±0.02 de 0.32±0.06 cd 0.27±0.03 d 0.35±0.06 c 0.93±0.07 a 0.66±0.06 b 81.8 <0.001
HCO 3 - 0?5 UC 0.35±0.07 e 0.25±0.01 ef 0.49±0.05 de 0.52±0.05 d 1.26±0.10 c 1.51±0.02 b 1.72±0.04 a 1.43±0.20 b 139.0 <0.001
0?5 OC 0.35±0.07 e 0.36±0.09 e 0.81±0.09 d 0.76±0.08 d 1.68±0.04 a 1.29±0.09 b 1.01±0.08 c 1.14±0.13 c 82.3 <0.001
5?20 UC 0.44±0.09 c 0.57±0.03 c 0.91±0.14 b 1.06±0.03 ab 1.14±0.31 a 0.93±0.04 b 1.28±0.08 a 1.06±0.11 ab 13.5 <0.001
5?20 OC 0.44±0.09 d 0.61±0.07 c 0.59±0.02 c 0.96±0.06 c 1.29±0.05 a 1.16±0.09 b 0.48±0.02 cd 1.11±0.13 b 58.9 <0.001
K+ 0?5 UC 0.05±0.01 b 0.05±0.01 b 0.09±0.01 b 0.07±0.01 b 0.10±0.02 b 0.09±0.01 b 0.66±0.11 a 0.66±0.07 a 100.0 <0.001
0?5 OC 0.05±0.01 d 0.06±0.01 d 0.15±0.03 c 0.16±0.05 b 0.21±0.05 bc 0.09±0.01 d 0.89±0.07 a 0.79±0.20 a 52.4 <0.001
5?20 UC 0.07±0.01 e 0.04±0.01 e 0.04±0.01 e 0.11±0.01 d 0.17±0.01 c 0.22±0.03 b 0.22±0.03 b 0.35±0.03 a 71.8 <0.001
5?20 OC 0.07±0.01 d 0.08±0.01 d 0.08±0.01 d 0.10±0.04 c 0.16±0.01 c 0.10±0.02 d 0.20±0.01 b 0.33±0.02 a 78.4 <0.001
Ca2+ 0?5 UC 0.49±0.05 cd 0.43±0.04 d 0.62±0.01 cd 0.72±0.11 cd 0.89±0.06 c 0.86±0.08 c 3.20±0.57 b 8.51±0.34 a 407.8 <0.001
0?5 OC 0.49±0.05 cd 0.44±0.03 d 0.31±0.05 cd 0.54±0.05 cd 0.45±0.03 c 0.65±0.06 c 1.67±0.02 b 8.84±1.17 a 148.1 <0.001
5?20 UC 0.43±0.01c 0.27±0.04 d 0.45±0.08 c 0.28±0.06 d 0.36±0.03 cd 0.56±0.04 b 0.58±0.03 b 0.89±0.07 a 44.0 <0.001
5?20 OC 0.43±0.01 c 0.38±0.03 c 0.34±0.05 cd 0.29±0.01d 0.36±0.04 cd 0.45±0.02 c 0.72±0.01 b 1.11±0.15 a 61.9 <0.001
Na+ 0?5 UC 0.27±0.01 e 0.33±0.03 e 0.64±0.08 e 0.72±0.06 de 1.38±0.14 d 2.69±0.17 c 5.50±1.08 b 6.54±0.35 a 107.5 <0.001
0?5 OC 0.27±0.01 f 0.35±0.01 f 1.15±0.11 e 1.18±0.14 e 1.84±0.11 c 1.93±0.10 c 4.83±0.03 b 5.48±1.02 a 84.4 <0.001
5?20 UC 0.38±0.02 ef 0.40±0.02 e 0.77±0.21 de 0.86±0.12 d 1.67±0.12 c 1.11±0.12 d 2.29±0.36 b 3.14±0.42 a 58.0 <0.001
5?20 OC 0.38±0.02 e 0.57±0.04 d 0.99±0.06 c 1.20±0.09 c 1.24±0.21 c 1.20±1.13 c 1.41±0.26 b 2.96±0.33 a 78.1 <0.001
Mg2+ 0?5 UC 0.21±0.01 d 0.21±0.02 d 0.23±0.02 d 0.47±0.03 e 0.50±0.04 d 0.62±0.01 c 1.24±0.10 a 0.82±0.11 b 125.4 <0.001
0?5 OC 0.21±0.01 d 0.15±0.01 d 0.15±0.02 d 0.25±0.02 d 0.22±0.04 d 0.48±0.06 c 1.22±0.01 a 1.04±0.21b 85.5 <0.001
5?20 UC 0.26±0.04 cd 0.27±0.02 cd 0.20±0.09 cd 0.22±0.08 cd 0.13±0.01 d 0.34±0.09 bc 0.83±0.14 a 0.47±0.13 b 20.0 <0.001
5?20 OC 0.26±0.04 c 0.25±0.02 c 0.26±0.09 c 0.18±0.02 d 0.21±0.05 cd 0.26±0.06 c 0.61±0.01 b 0.74±0.05 a 100.9 <0.001
Total anions 0?5 UC 0.98±0.06 f 0.91±0.07 f 1.64±0.15 e 2.05±0.07 de 2.83±0.17 d 4.10±0.07 c 9.95±0.83 b 16.72±0.61 a 665.6 <0.001
0?5 OC 0.98±0.06 d 0.95±0.06 d 1.39±0.13 d 1.65±0.17 d 2.72±0.07 c 2.65±0.17 c 8.67±0.02 b 17.21±1.31 a 438 <0.001
5?20 UC 1.11±0.11 e 1.07±0.07 e 1.52±0.15 d 1.74±0.12 d 2.22±0.27 c 2.19±0.11 c 3.93±0.04 b 4.81±0.35 a 164.2 <0.001
5?20 OC 1.11±0.11 f 1.11±0.09 f 1.20±0.08 f 1.74±0.01 e 2.20±0.04 d 2.42±0.10 c 3.27±0.14 b 4.91±0.25 a 347.9 <0.001
Total cations 0?5 UC 1.00±0.04 f 1.02±0.01 f 1.58±0.09 e 1.98±0.11 e 2.87±0.17 d 4.26±0.17 c 10.61±0.64 b 16.53±0.52 a 997.4 <0.001
0?5 OC 1.00±0.04 e 1.00±0.02 e 1.76±0.11 de 2.30±0.14 cd 2.71±0.10 c 3.15±0.10 c 8.62±0.08 b 16.15±1.45 a 308.1 <0.001
5?20 UC 1.14±0.06 de 1.03±0.04 e 1.50±0.10 d 1.46±0.04 de 2.32±0.09 c 2.10±0.26 c 3.80±0.09 b 4.84±0.48 a 136.8 <0.001
5?20 OC 1.14±0.06 f 1.24±0.07 e 1.63±0.07 d 1.78±0.08 d 1.98±0.22 cd 2.13±0.07 c 2.96±0.05 b 5.17±0.18 a 367.2 <0.001
Total salt 0?5 UC 1.98±0.03 f 1.92±0.07 f 3.22±0.24 e 4.03±0.17 e 5.71±0.34 d 8.36±0.23 c 20.56±1.12 b 33.26±1.12 a 1095.9 <0.001
0?5 OC 1.98±0.03 d 1.95±0.07 d 3.14±0.07 d 3.95±0.11 cd 5.42±0.17 c 5.80±0.25 c 17.30±0.09 b 33.36±2.76 a 373.3 <0.001
5?20 UC 2.25±0.17 e 2.10±0.03 e 3.02±0.25 d 3.20±0.10 d 4.55±0.30 c 4.30±0.35 c 7.73±0.09 b 9.65±0.58 a 269.9 <0.001
5?20 OC 2.25±0.17g 2.35±0.16 g 2.84±0.10 f 3.52±0.10 e 4.18±0.26 d 4.55±0.06 c 6.23±0.11 b 10.08±0.43 a 484.5 <0.001
EC 0?5 UC 115±12 c 135±12 c 692±147 bc 973±739 bc 1,001±677 bc 1,146±552 ab 1,589±816 ab 1,996±539 a 4.45 0.006
0?5 OC 115±12 c 362±100 c 620±137 bcd 650±181 bc 789±393 bc 1,078±450 a 911±458 a 1,456±767 a 3.86 0.012
5?20 UC 157±42 cd 164±48 c 137±15 c 481±120 b 615±166 b 384±138 bc 625±357 b 968±136 a 10.14 <0.001
5?20 OC 157±42 cd 371±111 c 142±27 d 404±57 cd 881±26 b 416±255 c 709±127 b 1,328±153 a 31.42 <0.001

Table 2

Enrichment ratios (E) of soil properties for H. ammodendron plantations of different age"

Soil properties Depth (cm) Plantation age F value P
2 5 9 13 16 31 39
SOC 0?5 1.05±0.02 c 1.89±0.01 a 1.52±0.42 abc 1.41±0.12 abc 1.53±0.33 abc 1.21±0.18 bc 1.70±0.55 ab 2.67 0.019
5?20 1.03±0.14 d 1.44±0.07 bc 1.12±0.15 cd 1.00±0.03 d 1.69±0.38 ab 1.32±0.25 c 1.80±0.18 a 7.42 0.001
Total N 0?5 1.14±0.14 cd 2.42±0.11 a 1.72±0.40 bc 1.37±0.17 cd 1.89±0.23 b 1.22±0.06 d 1.39±0.05 cd 15.35 <0.001
5?20 1.04±0.11 c 1.63±0.18 ab 1.15±0.14 c 1.36±0.37 b 1.46±0.36 ab 1.84±0.28 a 1.28±0.13 bc 3.77 0.019
Total anions 0?5 1.14±0.27 bc 1.09±0.20 bc 1.24±0.10 b 1.04±0.06 bc 1.55±0.12 a 1.15±0.10 bc 0.97±0.07 c 4.80 0.007
5?20 0.97±0.07 b 1.27±0.06 a 1.00±0.07 b 1.01±0.12 b 0.90±0.0.07 b 1.20±0.06 a 0.98±0.11 b 8.04 0.001
Total cations 0?5 1.01±0.03 cd 0.90±0.04 d 0.86±0.01d 1.06±0.08 c 1.35±0.09 a 1.23±0.08 b 1.03±0.10 c 20.0 <0.001
5?20 0.83±0.06 b 0.92±0.09 b 0.82±0.06 b 1.18±0.10 a 0.99±0.14 b 1.32±0.16 a 0.93±0.07 b 9.25 <0.001
Total salt 0?5 1.07±0.12 bc 0.98±0.08 c 1.02±0.03 c 1.05±0.07 d 1.44±0.10 a 1.19±0.07 b 1.00±0.08 c 11.2 <0.001
5?20 0.89±0.06 c 1.06±0.08 b 0.91±0.03 c 1.08±0.03 b 0.95±0.09 c 1.26±0.10 a 0.96±0.50 c 11.5 <0.001

Figure 2

The relationships of SOC concentration and total salt content at the 0?5 cm depth with plantation age"

Bai XF , Zhu JJ , Wang ZL , et al ., 2012. Relationship between the salt accumulation and the drought resistance in several woody plants in arid zone. Scientia Silvae Sinica, 48(7): 45−49. (in Chinese)
Cao YF , Li Y , Li CH , et al . , 2016. Relationship between presence of the desert shrub Haloxylon ammodendron and microbial communities in two soils with contrasting textures. Applied Soil Ecology, 103: 93−100. DOI: 10.1016/j.apsoil.2016.03.011.
doi: 10.1016/j.apsoil.2016.03.011
Chen LH , Li FX , Di XM , et al . , 1998. Aeolian Sandy Soils in China. Beijing: Science Press.
Guo QS , Wang CL , Guo ZH , et al . , 2005. Geographic distribution of existing Haloxylon ammodendron desert vegetation and its patch character in China. Scientia Silvae Sinica, 41(5): 2−7. DOI: 10.1360/biodiv.050121.
doi: 10.1360/biodiv.050121
Huang ZY , Zhang XS , Zhang GH , et al . , 2003. Influence of light, temperature, salinity and storage on seed germination of Haloxylon ammodendron . Journal of Arid Environment, 55: 453−464. DOI: 10.1016/S0140-1963(02)00294-X.
doi: 10.1016/S0140-1963(02)00294-X
Institute of Soil Sciences, Chinese Academy of Sciences , 1978. Physical and Chemical Analysis Methods of Soils. Shanghai: Shanghai Science Technology Press, pp. 7−59. (in Chinese)
Kang JJ , Duan JJ , Wang SM , et al . , 2013. Na compound fertilizer promotes growth and enhances drought resistance of the succulent xerophyte Haloxylon ammodendron . Soil Science & Plant Nutrition, 59(2): 289−299. DOI: 10.1080/00380768.2012.763183.
doi: 10.1080/00380768.2012.763183
Kang JJ , Zhao WZ , Zheng Y , et al . , 2017. Calcium chloride improves photosynthesis and water status in the C4 succulent xerophyte Haloxylon ammodendron under water deficit. Plant Growth Regulation, 82: 467−478. DOI: 10.1007/s10 725-017-0273-4.
doi: 10.1007/s10 725-017-0273-4
Li CJ , Li Y , Ma J , 2011. Spatial heterogeneity of soil chemical properties at fine scales induced by Haloxylon ammodendron (Chenopodiaceae) plants in a sandy desert. Ecological Research, 26: 385−394. DOI: 10.1007/s11284-010-0793-0.
doi: 10.1007/s11284-010-0793-0
Li CJ , Shi X , Lei JQ , et al . , 2014. The scale effect on the soil spatial heterogeneity of Haloxylon ammodendron (C. A. Mey) in a sandy desert. Environmental Earth Sciences, 71: 4199−4207. DOI: https://doi.org/10.1007/s12665-013-2813-1.
doi: 10.1007/s12665-013-2813-1
Li XR , Kong DS , Tan HJ , 2007. Changes in soil and vegetation following stabilization of dunes in the southeastern fringe of the Tengger Desert, China. Plant and Soil, 300: 221−231.
Li J , Zhao C , Zhu H , et al . , 2007. Effect of plant species on shrub fertile island at an oasis-desert ecotone in the South Junggar Basin, China. Journal of Arid Environments, 71: 350−361. DOI: https://doi.org/10.1016/j.jaridenv.2007. 03.015.
doi: 10.1016/j.jaridenv.2007. 03.015
Liu DJ , Liu YH , Sheng JD , et al . , 2009. Salinity character of underlying horizon of Haloxylon ammodendron in the north of Xinjiang. Journal of Soil and Water Conservation, 23(2): 47−51. (in Chinese)
Liu HD , Liu J , Zhao Y , et al . , 2017. Effects of Haloxylon ammodendron and Calligonum monolicumon water-heat-salt dynamics in sandy soil. Journal of Soil and Water Conservation, 31(3): 169−181. (in Chinese)
Nelson DW , Sommers LE ,1982.Total Carbon, Organic Carbonand Organic Matter,In: Page AL, Miller RH, KeeneyDR (eds.). Methods of Soil Analysis, Agronomy, Part 2,2nd edition. ASA, Madison, WI, pp.539−577.
Schlesinger WH , Pilmanies AM , 1998. Plant−soil interactions in deserts. Biogeochemistry, 42: 169−187. DOI: 10.1023/a:1005939924434.
doi: 10.1023/a:1005939924434
Si LM , Liu T , Liu B , et al . , 2011. A comparative study on reasons of degenerated of Haloxylon ammodendron population in the western part of Gurbantunggut Desert. Acta Ecologica Sinica, 31(21): 6460−6468. DOI: 10.19675/j.cnki. 1006-687x.2017.12054.
doi: 10.19675/j.cnki. 1006-687x.2017.12054
Su PX , Cheng GD , Yan QD , et al . , 2007a. Photosynthetic regulation of C4 desert plant Haloxylon ammodendron under drought stress. Plant Growth Regulation, 51:139−147. DOI: 10.1007/s10725-006-9156-9.
doi: 10.1007/s10725-006-9156-9
Su YZ , Zhao WZ , Su PX , et al . , 2007b. Ecological effects of desertification control and desertified land reclamation in an oasis−desert ecotone in an arid region: A case study in Hexi Corridor, northwest China. Ecological Engineering, 29: 117−124. DOI: 10.1016.j.ecoleng.2005.10.015.
doi: 10.1016.j.ecoleng.2005.10.015
Su YZ , Zhao HL , Li YL , et al . , 2004. Influencing mechanisms of several shrubs on soil chemical properties in semiarid Horqin Sandy Land, China. Arid Land Research and Management, 18: 251−263. DOI: 10.1080/15324980490451339.
doi: 10.1080/15324980490451339
Su YZ , Wang XF , Yang R , et al . , 2010. Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China. Journal of Environment Management, 91: 2109−2116. DOI: 10.1016/j.jenvman.2009.12.014.
doi: 10.1016/j.jenvman.2009.12.014
Su YZ , Wang XF , Yang R , et al . , 2012. Soil fertility, salinity and nematode diversity influenced by Tamarix ramosissima in different habitats in an arid desert oasis. Environmental Management, 50: 226−236. DOI: 10.1007/s00267-012-9872-z.
doi: 10.1007/s00267-012-9872-z
Su YZ , Zhao HL , 2003. Soil properties and plant species in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land, north China. Ecological Engineering, 20: 223−235. DOI: 10.1016/S0925-8574(03)00042-9.
doi: 10.1016/S0925-8574(03)00042-9
Tobe K , Li X , Omasa K , 2000. Effects of sodium chloride on seed germination and growth of two Chinese desert shrubs, Haloxylon ammodendron and H . persicum (Chenopodiaceae). Australian Journal of Botany, 48: 455−460. DOI: 10.1071/BT99013.
doi: 10.1071/BT99013
Wang GH , Zhao WZ , Liu H , et al . , 2015. Changes in soil and vegetation with stabilization of dunes in a desert-oasis ecotone. Ecological Research, 30: 639−650. DOI: 10.1007/s11284-015-1267-1.
doi: 10.1007/s11284-015-1267-1
Wang SM , Wan CG , Wang YR , et al . , 2004. The characteristics of Na+, K+ and free praline distribution in several drought-resistant plants of the Alxa Desert, China. Journal of Arid Environment, 56: 525−539.
Wang Z , Abudukeyoumu M , Tuerxunnayi R , et al . , 2014. Research on Nutrients, salinity and moisture contents of Haloxylon ammodendron trees in Northern Xinjiang Deserts. Journal of Xinjiang Agricultural University, 37(4): 339−344. (in Chinese)
Wei J , Zhang XM , Shan LS , et al . , 2007. Seedling growth dynamic of Haloxylon ammodendron and its adaptation strategy to habitat condition in hinterland of desert. Science in China (Series D), 50: 107−114. DOI: 10.1007/s11430-007-5006-5.
doi: 10.1007/s11430-007-5006-5
Wezel A , Rajot JL , Herbrig C , 2000. Influence of shrubs on soil characteristics and their function in Sahelian agroecosystems in semi-arid Niger. Journal of Arid Environment, 44: 383−398. DOI: 10.1006/jare.1999.0609.
doi: 10.1006/jare.1999.0609
Xi JB , Zhang FS , Yang C , et al ., 2004. A preliminary study on salt contents of soil in root-canopy area of halophytes. Chinese Journal of Applied Ecology, 15(1): 53−58. (in Chinese).
Yang WB , Feng W , Jia ZQ , et al . , 2014. Soil water threshold for the growth of Haloxylon ammodendron in the Ulan Buh Desert in arid northwest China. South Africa Journal of Botany, 92: 53−58. DOI: 10.1016/j.sajb.2014.02.001
doi: 10.1016/j.sajb.2014.02.001
Zhang GF , Zhao LW , Yang QY , et al . , 2016a. Effects of desert shrubs on fine-scale spatial patterns of understory vegetation in dry-land. Plant Ecology, 217: 1141−1155. DOI: 10.1007/s11258-016-0639-0.
doi: 10.1007/s11258-016-0639-0.
Zhang K , Su YZ , Wang T , et al . , 2016b. Soil properties and herbaceous characteristics in an age sequence of Haloxylon ammodendron plantations in an oasis-desert ecotone of northwestern China. Journal of Arid Land, 8(6): 960−972. DOI: 10.1007/s40333-016-0096-6.
doi: 10.1007/s40333-016-0096-6.
Zhao HL , Zhou RL , Su YZ , 2007. Shrub facilitation of desert land restoration in the Horqin Sand Land of Inner Mongolia. Ecological Engineering, 31(1): 1−8. DOI: 10.1016/j.ecoleng.2007.04.010.
doi: 10.1016/j.ecoleng.2007.04.010.
Zhu YJ , Jia ZQ , 2011. Soil water utilization characteristics of Haloxylon ammodendron plantation with different age during summer. Acta Ecologica Sinica, 31: 341−346. DOI: 10.1016/j.chnaes.2011.09.004.
doi: 10.1016/j.chnaes.2011.09.004.
[1] Rong Yang,JunQia Kong,ZeYu Du,YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404-412.
[2] YongZhong Su, TingNa Liu, XueFen Wang, Rong Yang. Salinity effects on soil organic carbon and its labile fractions, and nematode communities in irrigated farmlands in an arid region, northwestern China [J]. Sciences in Cold and Arid Regions, 2016, 8(1): 46-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!