Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (2): 109-119.doi: 10.3724/SP.J.1226.2022.21054.

Previous Articles    

Diversity and composition of culturable fungi in Horqin Sandy Land

ShaoKun Wang1,2,3(),XueYong Zhao1,2,3,Hao Qu1,3,Jie Lian2,3,Fei Wang1,2,FengHua Ding4   

  1. 1.Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, Gansu 730000, China
    2.Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, Gansu 730000, China
    3.Key Laboratory of Stress Physiology and Ecology, Gansu Province, Lanzhou, Gansu 730000, China
    4.Lishui University, Lishui, Zhejiang 323000, China
  • Received:2021-07-03 Accepted:2021-11-07 Online:2022-04-30 Published:2022-04-25
  • Contact: ShaoKun Wang E-mail:wangsk@lzb.ac.cn
  • Supported by:
    the National Nature Science Foundation of China(41771117);the China National Key Research and Development Plan(2017FY100200);the Second Tibetan Plateau Scientific Expedition and Research program(2019QZKK0305);the Key Research and Development project of Zhejiang Province(2018C02031)

Abstract:

Soil fungi play a key role in soil functional performance and ecological restoration. To understand the diversity and composition of culturable fungi in soils of Horqin Sandy Land, China, mobile dune, semi-fixed dune, fixed dune and sandy grassland were selected to investigate the soil fungal diversity using a traditional culture-dependent approach. ITS sequencing was applied to identify the fungal strains. The counts of culturable fungi increased significantly from mobile dune to sandy grassland along the gradient of sandy land restoration. The Shannon-Wiener, Simpson and Evenness indices of culturable fungi ranged from 1.26-1.71, 0.22-0.37 and 0.83-0.87, respectively. A total of 27 fungal strains were isolated using dilution plate cultural technique. The 27 fungal isolates were clustered into three groups: Ascomycota, Basidiomycota and Mucoromycota at phylum level, indicating that Ascomycota was the dominant fungal phylum (88.9% of the total). The isolated fungi were grouped into 3 phyla, 5 classes, 6 orders, 11 families and 13 genera. The results show that culturable fungi were diverse in sandy land soils and fungal isolates have potential function in lipid turnover, cellulose degradation and ethanol, glucose and fatty acid production. Future studies should be carried out to explore their ecological and biological function for degraded sandy land restoration.

Key words: Culturable fungi, fungal diversity, ITS sequences, phylogenetic analysis, Horqin Sandy Land

Figure 1

Study area of Horqin Sandy Land"

Figure 2

Culturable fungal abundance in the fourhabitats of Horqin Sandy Land"

Table 1

Identification of DNA sequences and their taxonomic affiliations in NCBI using BLAST"

Strain No.G+CLength (bp)Accession number in GenBankMost similar stainSimilarity
S0159.79%470JN676110.1Aspergillus japonicus isolate B499.40%
S0249.11%448MK764999.1Fusarium equiseti isolate NX2-199.79%
S0351.09%460MH517365.1Fusarium brachygibbosum isolate AV799.40%
S0460.71%476MK720828.1Penicillium ochrochloron strain KD-F198.64%
S0551.40%465MK696907.1Fusarium tricinctum isolate C14-11B99.01%
S0655.75%522KC576722.1Trichoderma koningiopsis strain CEN71899.82%
S0756.99%479DQ339549.1Penicillium griseofulvum strain NRRL 3523100.00%
S0837.57%535MH854979.1Mucor circinelloides strain CBS 202.2899.46%
S0961.05%493GU966506.1Penicillium javanicum strain WTS2799.07%
S1049.69%491FJ426391.1Fusarium chlamydosporum isolate DB-L3999.80%
S1154.13%484MT251175.1Fusarium falciforme strain DTO 422-H899.80%
S1257.68%482EF669945.1Neosartorya aureola isolate NRRL 2064399.41%
S1345.07%497KF887142.1Alternaria tenuissima strain S2499.79%
S1454.58%469KY310738.1Humicola fuscoatra isolate 10500299.79%
S1560.04%473MK450677.1Penicillium caperatum strain CMV001H199.59%
S1655.20%558MK871030.1Trichoderma sp. isolate SDAS20416698.97%
S1748.33%480MN959998.1Fusarium oxysporum isolate 1599.60%
S1846.87%463MW723759.1Didymella sp. isolate 63JAN97.80%
S1947.07%444KY318503.1Coniothyrium aleuritis isolate 4297.98%
S2058.81%505KC790523.1Neosartorya sp. 8-13c99.62%
S2148.97%290MK299139.1Fusarium brachygibbosum isolate LWU_4090.30%
S2247.65%447MN833380.1Fusarium oxysporum isolate 83#99.59%
S2357.73%440MF574327.1Penicillium javanicum isolate Y9_ITS1F99.77%
S2452.12%449MH001945.1Myrothecium lachastrae isolate 13-191397.62%
S2535.67%485JQ683240.1Cunninghamella echinulata isolate A-33293.74%
S2649.10%446MH173818.1Fusarium chlamydosporum isolate DOBPGPF V3798.12%
S2742.02%545MN759032.1Naganishia albida isolate en11998.96%

Figure 3

Culturable fungal diversity indices in the four habitats of Horqin Sandy Land"

Figure 4

Phylogenetic Maximum Likelihood (ML) tree of the 27 fungal isolates and their most related strains in GenBank"

Figure 5

The proportion of different taxa at phylum, class, order, family and genus levels"

Ayar Kayali H, Tarhan L, 2004. The effect of glucose and maltose concentrations on pyruvate and ascorbate production, antioxidant enzyme activities and LPO levels in Fusarium equiseti . Process Biochemistry, 39: 1519-1524. DOI: 10. 1016/S0032-9592(03)00286-3 .
doi: 10. 1016/S0032-9592(03)00286-3
Bardgett RD, Frankland JC, Whittaker JB, 1993. The effects of agricultural management on the soil biota of some upland grasslands. Agriculture, Ecosystems & Environment, 45: 25-45. DOI: 10.1016/0167-8809(93)90057-V .
doi: 10.1016/0167-8809(93)90057-V
Bonilla JO, Callegari EA, Paez MD, et al., 2021. Characterization of copper stress response in Fusarium tricinctum M6: A metal-resistant microorganism isolated from an acid mine drainage-affected environment. Journal of Hazardous Materials, 412: 125216. DOI: 10.1016/j.jhazmat.2021. 125216 .
doi: 10.1016/j.jhazmat.2021. 125216
Chen C, Park T, Wang X, et al., 2019. China and India lead in greening of the world through land-use management. Nature Sustainability, 2: 122-129. DOI: 10.1038/s41893-019-0220-7 .
doi: 10.1038/s41893-019-0220-7
Chen C, Song K, Zhang Y, et al., 2021. Biotransformation of betulinic acid by Circinella muscae and Cunninghamella echinulata to discover anti-inflammatory derivatives. Phytochemistry, 182: 112608. DOI: 10.1016/j.phytochem.2020. 112608 .
doi: 10.1016/j.phytochem.2020. 112608
Da Silva PO, de Alencar Guimarães NC, Serpa JDM, et al., 2019. Application of an endo-xylanase from Aspergillus japonicus in the fruit juice clarification and fruit peel waste hydrolysis. Biocatalysis and Agricultural Biotechnology, 21: 101312. DOI: 10.1016/j.bcab.2019.101312 .
doi: 10.1016/j.bcab.2019.101312
Evans SE, Bell-Dereske LP, Dougherty KM, et al., 2020. Dispersal alters soil microbial community response to drought. Environmental Microbiology, 22: 905-916. DOI: 10.1111/1462-2920.14707 .
doi: 10.1111/1462-2920.14707
Fakas S, Galiotou-Panayotou M, Papanikolaou S, et al., 2007. Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata . Enzyme and Microbial Technology, 40: 1321-1327. DOI: 10.1016/j.enzmictec. 2006.10.005 .
doi: 10.1016/j.enzmictec. 2006.10.005
Gao C, Montoya L, Xu L, et al., 2019. Strong succession in arbuscular mycorrhizal fungal communities. The ISME Journal, 13: 214-226. DOI: 10.1038/s41396-018-0264-0 .
doi: 10.1038/s41396-018-0264-0
Guo M, Li B, Wang R, et al., 2020. Occurrence of dieback disease caused by Fusarium equiseti on Dendrobium officinale in China. Crop Protection, 137: 105209. DOI: 10.1016/j.cropro.2020.105209 .
doi: 10.1016/j.cropro.2020.105209
Gupta K, Chundawat TS, 2020. Zinc oxide nanoparticles synthesized using Fusarium oxysporum to enhance bioethanol production from rice-straw. Biomass and Bioenergy, 143: 105840. DOI: 10.1016/j.biombioe.2020.105840 .
doi: 10.1016/j.biombioe.2020.105840
Hamayun M, Khan SA, Khan AL, et al., 2011. Gibberellin producing Neosartorya sp. CC8 reprograms Chinese cabbage to higher growth. Scientia Horticulturae, 129: 347-352. DOI: 10.1016/j.scienta.2011.03.046 .
doi: 10.1016/j.scienta.2011.03.046
Harris J, 2009. Soil microbial communities and restoration ecology: facilitators or followers? Science, 325: 573-574. DOI: 10.1126/science.1172975 .
doi: 10.1126/science.1172975
Hasanin MS, Mostafa AM, Mwafy EA, et al., 2018. Eco-friendly cellulose nano fibers via first reported Egyptian Humicola fuscoatra Egyptia X4: Isolation and characterization. Environmental Nanotechnology, Monitoring & Management, 10: 409-418. DOI: 10.1016/j.enmm.2018.10.004 .
doi: 10.1016/j.enmm.2018.10.004
Hawksworth DL, 2001. The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research, 105: 1422-1432. DOI: 10.1017/S0953756201004725 .
doi: 10.1017/S0953756201004725
Ho HC, Shiau PF, Liu FC, et al., 2010. Purification, characterization and complete amino acid sequence of nuclease C1 from Cunninghamella echinulata var. echinulata. European Journal of Biochemistry, 256: 112-118. DOI: 10.1046/j. 1432-1327.1998.2560112.x .
doi: 10.1046/j. 1432-1327.1998.2560112.x
Hu L, Cao L, Zhang R, 2014. Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil. World Journal of Microbiology and Biotechnology, 30: 1085-1092. DOI: 10.1007/s11274-013-1528-5 .
doi: 10.1007/s11274-013-1528-5
Huang Y, Jin Y, Shen W, et al., 2014. The use of plant cell wall-degrading enzymes from newly isolated Penicillium ochrochloron Biourge for viscosity reduction in ethanol production with fresh sweet potato tubers as feedstock. Biotechnology and Applied Biochemistry, 61: 480-491. DOI: 10.1002/bab.1190 .
doi: 10.1002/bab.1190
Jacoby R, Peukert M, Succurro A, et al., 2017. The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Frontiers in Plant Science, 8: 1617. DOI: 10.3389/fpls.2017.01617 .
doi: 10.3389/fpls.2017.01617
Jia Z, Myrold DD, Conrad R, 2020. Soil biodiversity in a rapidly changing world. Pedosphere, 30: 1-4. DOI: 10.1016/S1002-0160(19)60842-8 .
doi: 10.1016/S1002-0160(19)60842-8
Koch L, Potenski C, Trenkmann M, 2021. Nature milestones: genomic sequencing. Nature, .
Landeweert R, Leeflang P, Kuyper TW, et al., 2003. Molecular identification of ectomycorrhizal mycelium in soil horizons. Applied and Environmental Microbiology, 69: 327-333. DOI: 10.1128/AEM.69.1.327-333.2003 .
doi: 10.1128/AEM.69.1.327-333.2003
Lentendu G, Zinger L, Manel S, et al., 2011. Assessment of soil fungal diversity in different alpine tundra habitats by means of pyrosequencing. Fungal Diversity, 49: 113-123. DOI: 10.1007/s13225-011-0101-5 .
doi: 10.1007/s13225-011-0101-5
Li FR, Zhang H, Zhang TH, et al., 2003. Variations of sand transportation rates in sandy grasslands along a desertification gradient in northern China. Catena, 53: 255-272. DOI: 10.1016/S0341-8162(03)00039-0 .
doi: 10.1016/S0341-8162(03)00039-0
Li J, Li X, Zheng X, et al., 2020. Temporal and spatial changes and their driving forces of vegetation cover in Horqin Sandy Land in the recent 40 years. Chinese Journal of Ecology, 39: 1399-1408. DOI: 10.13292 /j.1000-4890.202005.006 .
doi: 10.13292 /j.1000-4890.202005.006
Li YQ, Zhao XY, Zhang FX, et al., 2015. Accumulation of soil organic carbon during natural restoration of desertified grassland in China's Horqin Sandy Land. Journal of Arid Land, 7: 328-340. DOI: 10.1007/s40333-014-0045-1 .
doi: 10.1007/s40333-014-0045-1
Liu RT, Zhao HL, Zhao XY, et al., 2015. Distribution of Soil Fauna in Horqin Sandy Land. Beijing: Science Press.
Manganyi MC, Regnier T, Kumar A, et al., 2018. Phylogenetic analysis and diversity of novel endophytic fungi isolated from medicinal plant Sceletium tortuosum. Phytochemistry Letters, 27: 36-43. DOI: 10.1016/j.phytol.2018.06.004 .
doi: 10.1016/j.phytol.2018.06.004
Manter DK, Vivanco JM, 2007. Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis. Journal of Microbiological Methods, 71: 7-14. DOI: 10.1016/j.mimet.2007.06.016 .
doi: 10.1016/j.mimet.2007.06.016
Martínez-García LB, Pugnaire FI, 2011. Arbuscular mycorrhizal fungi host preference and site effects in two plant species in a semiarid environment. Applied Soil Ecology, 48: 313-317. DOI: 10.1016/j.apsoil.2011.04.003 .
doi: 10.1016/j.apsoil.2011.04.003
Mousa AAA, Mohamed H, Hassane AMA, et al., 2021. Antimicrobial and cytotoxic potential of an endophytic fungus Alternaria tenuissima AUMC14342 isolated from Artemisia judaica L. growing in Saudi Arabia. Journal of King Saud University-Science, 33: 101462. DOI: 10.1016/j.jksus.2021. 101462 .
doi: 10.1016/j.jksus.2021. 101462
Mueller GM, Schmit JP, 2007. Fungal biodiversity: what do we know? What can we predict? Biodiversity and Conservation, 16: 1-5. DOI: 10.1007/s10531-006-9117-7 .
doi: 10.1007/s10531-006-9117-7
Mussatto SI, Aguilar CN, Rodrigues LR, et al., 2009. Fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus immobilized on lignocellulosic materials. Journal of Molecular Catalysis B: Enzymatic, 59: 76-81. DOI: 10.1016/j.molcatb.2009.01.005 .
doi: 10.1016/j.molcatb.2009.01.005
Nagendra H, 2002. Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Applied Geography, 22: 175-186. DOI: 10.1016/S0143-6228(02)00002-4 .
doi: 10.1016/S0143-6228(02)00002-4
Ochoa-Hueso R, Collins SL, Delgado-Baquerizo M, et al., 2018. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Global Change Biology, 24: 2818-2127. DOI: 10.1111/gcb.14113 .
doi: 10.1111/gcb.14113
Papanikolaou S, Sarantou S, Komaitis M, et al., 2004. Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. Journal of Applied Microbiology, 97: 867-875. DOI: 10.1111/j.1365-2672.2004.02376.x .
doi: 10.1111/j.1365-2672.2004.02376.x
Peay KG, Baraloto C, Fine PV, 2013. Strong coupling of plant and fungal community structure across western Amazonian rainforests. The ISME Journal, 7: 1852-1861. DOI: 10. 1038/ismej.2013.66 .
doi: 10. 1038/ismej.2013.66
Rajendran RK, Lee Y, Chou P, et al., 2020. Biodegradation of the endocrine disrupter 4-t-octylphenol by the non-ligninolytic fungus Fusarium falciforme RRK20: Process optimization, estrogenicity assessment, metabolite identification and proposed pathways. Chemosphere, 240: 124876. DOI: 10.1016/j.chemosphere.2019.124876 .
doi: 10.1016/j.chemosphere.2019.124876
Saha BC, 2004. Production, purification and properties of endoglucanase from a newly isolated strain of Mucor circinelloides . Process Biochemistry, 39: 1871-1876. DOI: 10.1016/j.procbio.2003.09.013 .
doi: 10.1016/j.procbio.2003.09.013
Sathiyamoorthi E, Dikshit PK, Kumar P, et al., 2020. Co-fermentation of agricultural and industrial waste by Naganishia albida for microbial lipid production in fed-batch fermentation. Journal of Chemical Technology & Biotechnology, 95: 813-821. DOI: 10.1002/jctb.6271 .
doi: 10.1002/jctb.6271
Shan LY, Cui WY, Zhang DD, et al., 2016. First report of fusarium brachygibbosum causing maize stalk rot in China. Plant Disease, 101: 837. DOI: 10.1094/PDIS-10-16-1465-PDN .
doi: 10.1094/PDIS-10-16-1465-PDN
Sharma D, Gosai K, Dutta J, et al., 2015. Fungal diversity of twelve major vegetational zones of Arunachal Himalaya, India. Current Research in Environmental & Applied Mycology, 5: 101-119. DOI: 10.5943/cream/5/2/4 .
doi: 10.5943/cream/5/2/4
Sun T, Zhu H, Cao F, 2020. Chapter 6-The Fungal Myrothecium Genus as a Source of Bioactive Secondary Metabolites. In: Studies in Natural Products Chemistry. Elsevier.
Sun Y, Zhang Y, Feng W, et al., 2019. Revegetated shrub species recruit different soil fungal assemblages in a desert ecosystem. Plant and Soil, 435: 81-93. DOI: 10.1007/s11104-018-3877-1 .
doi: 10.1007/s11104-018-3877-1
Torsvik V, Øvreås L, 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 5: 240-245. DOI: 10.1016/S1369-5274(02)00324-7 .
doi: 10.1016/S1369-5274(02)00324-7
van der Heijden MGA, Klironomos JN, Ursic M, et al., 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396: 69-72. DOI: 10.1038/23932 .
doi: 10.1038/23932
van der Wal A, Geydan TD, Kuyper TW, et al., 2013. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiology Reviews, 37: 477-494. DOI: 10.1111/1574-6976.12001 .
doi: 10.1111/1574-6976.12001
Varela A, Martins C, Núñez O, et al., 2015. Understanding fungal functional biodiversity during the mitigation of environmentally dispersed pentachlorophenol in cork oak forest soils. Environmental Microbiology, 17: 2922-2934. DOI: 10.1111/1462-2920.12837 .
doi: 10.1111/1462-2920.12837
Venkatachalam S, Gowdaman V, Prabagaran SR, 2015. Culturable and culture-independent bacterial diversity and the prevalence of cold-adapted enzymes from the Himalayan Mountain Ranges of India and Nepal. Microbial Ecology, 69: 472-491. DOI: 10.1007/s00248-014-0476-4 .
doi: 10.1007/s00248-014-0476-4
Wallenstein MD, Mcmahon S, Schimel J, 2007. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiology Ecology, 59: 428-435. DOI: 10.1111/j.1574-6941.2006.00260.x .
doi: 10.1111/j.1574-6941.2006.00260.x
Wang SK, Zhao XY, Suvdantsetseg B, et al., 2020. Isolation of efficient cellulose decomposer in sandy cropland and its application in straw turnover in agro-pasture ecotone of Northern China. Frontiers in Environmental Science, 8: 160. DOI: 10.3389/fenvs.2020.528732 .
doi: 10.3389/fenvs.2020.528732
Wang SK, Zhao XY, Qu H, et al., 2011. Effects of shrub litter addition on dune soil microbial community in Horqin Sandy Land, Northern China. Arid Land Research and Management, 25: 203-216. DOI: 10.1080/15324982.2011.565854 .
doi: 10.1080/15324982.2011.565854
Wang SK, Zuo XA, Zhao XY, et al., 2016. Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China. Environmental Monitoring and Assessment, 188: 1-13. DOI: 10.1007/s10661-015-5031-3 .
doi: 10.1007/s10661-015-5031-3
Wang T, 2003. Desert and Desertification in China. Shijiazhuang: Heibei Science and Technology Press.
Wardle DA, Lindahl BD, 2014. Disentangling global soil fungal diversity. Science, 346: 1052-1053. DOI: 10.1126/science.aaa1185 .
doi: 10.1126/science.aaa1185
Wigginton S, Amador JA, 2020. Soil: Microbial Ecology. In: Landscape and Land Capacity. CRC Press.
Wijayawardene NN, Hyde KD, Lumbsch HT, et al., 2018. Outline of Ascomycota: 2017. Fungal Diversity, 88: 167-263. DOI: 10.1007/s13225-018-0394-8 .
doi: 10.1007/s13225-018-0394-8
Xu G, Zheng H, 1986. A Manual of Soil Microbial Analysis Method. Beijing: Chinese Agriculture Press.
Yu C, Luo X, 2020. Trichoderma koningiopsis controls Fusarium oxysporum causing damping-off in Pinus massoniana seedlings by regulating active oxygen metabolism, osmotic potential, and the rhizosphere microbiome. Biological Control, 150: 104352. DOI: 10.1016/j.biocontrol.2020.104352 .
doi: 10.1016/j.biocontrol.2020.104352
Zhang J, Man B, Fu B, et al., 2013. The diversity of soil culturable fungi in the three alpine shrub grasslands of Eastern Qilian Mountains. Frontiers of Earth Science, 7: 76-84. DOI: 10.1007/s11707-012-0345-8 .
doi: 10.1007/s11707-012-0345-8
Zhang Y, Song Y, 2021. Lipid Accumulation by Xylose Metabolism Engineered Mucor circinelloides Strains on Corn Straw Hydrolysate. Applied Biochemistry and Biotechnology, 193: 856-868. DOI: 10.1007/s12010-020-03427-2 .
doi: 10.1007/s12010-020-03427-2
Zhao HL, Zhao XY, Zhang TH, 2003. Desertification Processes and Its Restoration Mechanisms in the Horqin Sand Land. Beijing: Ocean Press.
Zhao XY, Luo YY, Wang SK, et al., 2010. Is desertification reversion sustainable in Northern China?-A case study in Naiman County, part of typical agro-pastoral transitional zone in Inner-Mongolia, China. Global Environmental Research, 14: 63-70.
Zhao XY, Wang SK, Luo YY, et al., 2015. Toward sustainable desertification reversion: A case study in Horqin Sandy Land of northern China. Sciences in Cold and Arid Regions, 7: 23-28. DOI: 10.3724/SP.J.1226.2015.00023 .
doi: 10.3724/SP.J.1226.2015.00023
Zheng Q, Wei X, Xu X, et al., 2020. Pretreatment with Trichoderma sp. AH enhances conversion and specificity of wheat straw in supercritical methanolysis. Biomass and Bioenergy, 135: 105149. DOI: 10.1016/j.biombioe.2019.01.031 .
doi: 10.1016/j.biombioe.2019.01.031
Zuo XA, Zhao XY, Wang SK, et al., 2012. Influence of dune stabilization on relationship between plant diversity and productivity in Horqin Sand Land, Northern China. Environmental Earth Sciences, 67: 1547-1556. DOI: 10.1007/s12665-012-1950-2 .
doi: 10.1007/s12665-012-1950-2
[1] CaiXia Zhang,JinChang Li. Simulating the effect of wind erosion on aeolian desertification process of Horqin sandy land and its significance on material cycle: a wind tunnel study [J]. Sciences in Cold and Arid Regions, 2022, 14(1): 43-53.
[2] WenDa Huang, XueYong Zhao, YuLin Li, YuQiang Li, YaYong Luo. Relationship between the haplotype distribution of Artemisia halodendron (Asteraceae) and hydrothermal regions in Horqin Sandy Land, northern China [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 151-158.
[3] YuQiang Li, JianPeng Zhang, XueYong Zhao, TongHui Zhang, YuLin Li, XinPing Liu, YinPing Chen. Comparison of soil physico-chemical properties under different land-use and cover types in northeastern China's Horqin Sandy Land [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 495-506.
[4] YongQing Luo, XueYong Zhao, JiePing Ding, Tao Wang. Vertical distribution of Artemisia halodendron root system in relation to soil properties in Horqin Sandy Land, NE China [J]. Sciences in Cold and Arid Regions, 2016, 8(5): 411-418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!