Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (1): 43-53.doi: 10.3724/SP.J.1226.2022.21021.

Previous Articles     Next Articles

Simulating the effect of wind erosion on aeolian desertification process of Horqin sandy land and its significance on material cycle: a wind tunnel study

CaiXia Zhang1(),JinChang Li2   

  1. 1.Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.Shanxi Laboratory for Yellow River, Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
  • Received:2021-04-14 Accepted:2021-08-27 Online:2022-02-28 Published:2022-03-03
  • Contact: CaiXia Zhang E-mail:zhangcaixia@lzb.ac.cn
  • Supported by:
    the National Key R&D Program of China(2020YFA0608404);a grant from the National Nature Science Foundation of China(41101006);the Project of the Key Laboratory of Desert and Desertification, Chinese Academy of Sciences(KLDD-2019-008)

Abstract:

Samples from the Horqin sandy land were exposed to a series of wind velocities, and sink particles were collected at the end of the diffusion section of a wind tunnel. Grain sizes of collected samples show great variation because of the granularity difference of the surface samples. The original samples show lower average content of SiO2 and higher average content of Al2O3, Fe2O3, MgO, CaO, Na2O, and K2O than collected samples. Compared with other dust source areas in China, the Horqin sandy land had higher content of Zr, Ba, SiO2, Al2O3 and K2O. Compared with the average upper continental crust (UCC) composition, surface samples were rich in the content of Y, Zr, Nb, Ba, La, Nd. Geochemistry characteristics of fine grain components of the Horqin sandy land differ from those from other dust source regions, because fine-grained particles in the Horqin sandy land were mostly derived from various local deposits formed in its unique depositional environments influenced by several tectonic activities.

Key words: sink sand, wind erosion, aeolian process, Horqin sandy land

Figure 1

Land use patterns of the Horqin sandy land and sampling sites in the study area (The land use pattern is based on data provided by the Environment and Ecological Science Data Center for West China)"

Figure 2

The arrangement of the wind tunnel experiment"

Figure 3

Frequency distribution of original samples and sink sand samples"

Table 1

The grain size variation of sink and original samples"

ItemClay(<3.9)Fine silt(3.9,31)Coarse silt(31,63)Very fine sand(63,125)Fine sand(125,250)Medium sand(250,500)Coarse sand(>500)Φ(Mz)
k1.5OS0.381.470.0014.2259.7624.070.102.07
k1.5TS0.000.000.0010.8559.4829.470.212.14
k11.1OS2.043.697.6240.0939.327.230.012.31
k11.1TS3.454.623.2735.9243.748.890.112.42
k11.2OS5.016.729.6138.6434.735.300.002.98
k11.2TS1.672.442.6335.1947.6610.380.032.86
k11.4OS0.951.382.4644.0348.113.080.003.09
k11.4TS1.261.360.8135.9155.065.600.003.30
k2.3OS0.430.640.572.8132.9953.219.352.85
k2.3TS0.000.000.005.7041.4446.586.282.99
k3.4OS1.472.685.648.3037.2940.843.781.96
k3.4TS0.000.470.316.8647.2841.713.371.81
k4.5OS8.5413.4717.2239.5420.011.220.002.09
k4.5TS5.889.529.8838.7531.804.160.002.22
k5.1OS0.000.000.607.4234.8646.9610.163.52
k5.1TS0.150.310.003.7829.2151.9014.654.42
k5.5OS0.331.381.959.8947.5437.541.381.72
k5.5TS0.150.730.627.2044.1843.773.361.90
k6.1OS0.511.992.441.2835.7653.364.662.07
k6.1TS0.321.111.783.0840.4648.554.712.22
k6.3OS0.251.160.871.2638.8253.334.291.96
k6.3TS0.111.111.532.6142.6048.973.061.90
k7.2OS0.701.284.238.0246.5738.700.501.98
k7.2TS0.070.290.004.2153.1541.950.331.90
k7.4OS0.000.200.892.1245.5150.430.852.11
k7.4TS0.000.000.001.1046.8551.440.612.23
k8.5OS0.000.000.003.4648.9445.542.061.98
k8.5TS0.000.000.004.5046.3646.432.712.00
k9.5OS0.000.000.000.8151.9247.120.152.02
k9.5TS0.000.000.003.8459.3836.580.202.04
k1.4OS0.000.070.126.7551.2141.260.572.17
k1.4TS0.000.000.004.4549.6645.050.842.03
Ave. of original samples1.212.133.1913.4539.6132.312.232.17
Ave. of sink samples0.771.291.2312.0043.4333.032.382.26

Table 2

Major elements variation of sink and original samples"

SamplesSiO2Al2O3Fe2O3MgOCaONa2OK2O
Avg. of original samples85.527.900.890.240.671.482.82
Avg. of sink samples86.427.490.770.200.581.372.75
T-2.2414.1244.0584.4484.6504.7352.500
Significance0.0420.0010.0010.0010.0000.0000.025

Figure 4

Ternary relationships between Fe/Al, Mg/Al and Ca/Al for original and sink sand samples"

Table 3

The minor elements variation of sink and original samples"

SamplesPTiVCrMnNiCuGaAs
Avg. of original samples159.31,251.217.014.7208.424.07.18.94.7
Avg. of sink samples196.81,020.013.411.2135.829.14.08.65.4
T-4.4464.5694.3584.32612.385-2.4417.9401.284-1.920
Significance0.0010.0000.0010.0010.0000.0290.0000.2200.075
SamplesRbSrYZrNbBaLaCeNd
Avg. of original samples87.7127.88.9173.15.4589.520.290.511.8
Avg. of sink samples82.9117.48.1131.74.6586.211.054.97.1
T5.9424.1402.7573.6381.8560.6805.54911.5074.193
Significance0.0000.0010.0150.0030.0850.5080.0000.0000.001

Table 4

The major elements variation of sink and original samples"

SiO2Al2O3Fe2O3MgOCaONa2OK2O
K11.1OS82.719.231.110.310.771.813.20
K11.1>63 μm83.118.681.040.260.711.683.05
K11.1<63 μm59.3912.382.651.061.822.202.46
K11.2OS82.789.261.080.300.751.813.24
K11.2>63 μm81.779.181.000.280.701.793.14
K11.2<63 μm59.8712.362.270.981.642.232.57
K11.4OS83.828.820.870.230.701.763.26
K11.4>63 μm82.739.040.850.230.701.813.23
K11.4<63 μm57.8011.932.620.931.952.302.42
K4.5OS75.8410.362.000.712.612.062.94
K4.5>63 μm76.9110.141.890.642.452.042.97
K4.5<63 μm57.2312.332.511.433.842.252.39
K5.5OS89.056.580.600.140.331.162.58
K5.5<63 μm62.1912.041.850.921.292.412.60
K5.5>63 μm89.466.230.560.120.311.042.44
K6.1OS88.266.540.560.130.311.082.40
K6.1>63 μm90.045.980.520.120.290.972.32
K6.1<63 μm62.5212.192.110.981.432.492.57
K6.3OS89.836.040.530.110.270.992.32
K6.3>63 μm90.685.790.480.100.230.952.25
K6.3<63 μm63.2012.392.260.981.382.502.56
Ave. of original samples84.618.120.960.270.821.522.85
Ave. of >63 μm84.967.860.910.250.771.472.77
Ave. of <63 μm60.3112.232.321.041.912.342.51

Table 5

The minor elements of different parts of sink samples (to be continued:)"

PTiVCrMnCoNiCuGaAs
K11.1OS217.81,601.620.117.2206.913.923.43.69.75.0
K11.1>63 μm220.61,454.320.413.7195.616.332.05.810.46.6
K11.1<63 μm504.16,179.360.966.3503.08.612.50.69.07.1
K11.2OS186.71,606.321.315.6203.413.020.64.310.04.9
K11.2>63 μm165.21,340.524.010.7186.913.515.34.69.23.7
K11.2<63 μm420.15,414.155.451.3460.48.512.11.79.08.7
K11.4OS186.51,186.116.99.8157.916.126.35.210.26.2
K11.4>63 μm178.11,121.318.09.2152.516.523.24.410.45.6
K11.4<63 μm438.38,355.364.781.5633.79.110.2/6.37.0
K4.5OS352.82,272.238.027.8334.37.522.67.911.67.4
K4.5>63 μm332.92,098.839.824.5313.07.224.88.412.67.9
K4.5<63 μm628.94,002.356.255.5443.78.714.37.010.95.5
K5.5OS193.5855.39.911.0108.015.226.82.97.14.3
K5.5<63 μm545.53,309.139.036.1353.98.38.22.59.42.3
K5.5>63 μm215.8723.37.18.598.217.743.05.87.96.7
K6.1OS182.4676.99.56.295.116.725.83.37.43.9
K6.1>63 μm226.5610.47.88.385.316.842.35.18.16.3
K6.1<63 μm678.43,418.641.138.1369.58.09.05.610.62.2
K6.3OS208.0639.08.38.391.317.141.83.88.26.7
K6.3>63 μm266.4560.06.39.276.219.355.74.18.39.4
K6.3<63 μm623.53,971.848.551.5387.18.47.92.89.31.3

Ave. of original

samples

218.21,262.517.713.7171.014.226.84.49.25.5
Ave. of >63 μm229.31,129.817.612.0158.215.333.85.59.56.6
Ave. of <63 μm548.44,950.152.254.3450.28.5010.63.49.24.9
RbSrYZrNbBaLaCeNd
K11.1OS92.2133.39.9219.15.3621.611.554.69.3
K11.1>63 μm97.7137.410.7198.95.9596.025.263.14.7
K11.1<63 μm93.0216.638.11845.117.6567.758.460.932.4
K11.2OS98.9139.211.1250.56.4599.520.859.57.3
K11.2>63 μm98.3134.79.7164.65.3602.513.155.16.5
K11.2<63 μm102.8236.740.42061.521.5587.945.939.328.0
K11.4OS101.3136.98.6145.15.2627.45.258.27.9
K11.4>63 μm99.9134.57.9124.64.7621.816.657.24.5
K11.4<63 μm93.7222.247.32684.123.0547.455.658.540.8
K4.5OS93.7189.713.8248.37.2637.222.951.715.9
K4.5>63 μm98.6192.613.7214.17.0655.021.558.313.7
K4.5<63 μm89.9236.021.9657.610.9593.537.158.619.2
K5.5OS73.6101.67.3115.24.0582.711.853.910.6
K5.5<63 μm87.8193.119.3711.78.9612.425.355.119.0
K5.5>63 μm74.4101.37.196.74.0575.96.849.48.6
K6.1QY71.998.16.668.43.4540.311.259.27.4
K6.1>63 μm70.493.96.262.53.6522.114.242.12.3
K6.1<63 μm84.3182.416.4357.37.5610.629.441.715.6
K6.3QY69.894.66.367.34.1539.510.548.33.2
K6.3>63 μm68.088.25.954.64.1521.612.020.77.0
K6.3<63 μm73.0164.516.4365.76.8601.026.456.215.9

Ave. of original

samples

85.9127.69.1159.15.1592.613.455.18.8
Ave. of >63 μm86.7126.18.8130.94.9585.015.649.46.8
Ave. of <63 μm89.2207.428.61240.413.8588.739.752.924.4

Table 6

The geochemistry characteristics of the fine-grained component from different potential dust source areas of China. Data of other regions were derived from Wang et al. (2018)"

RegionNorthern Qinghai-Tibet PlateauTarim BasinTurpan-Hami BasinHexi CorridorAla Shan PlateauHorqin sandy landMeanUpper crust
P801.81,061.4807.2802.4888.7548.4818.32,000
Ti4693.65,532.54,375.24,699.45,8634,950.15,0195,000
V93.4098.40101.798.30132.952.2096.20107.0
Cr82.1081.9069.5092.50210.254.3098.4085.00
Mn684.1695.1894.6801.5726.3450.2708.6700.0
Co15.9013.0019.1018.2017.308.50015.3017.00
Ni37.0027.1033.9042.7053.0010.6034.0044.00
Cu26.4018.9050.2036.8028.103.40027.3025.00
Ga13.1010.3016.1015.1012.809.20012.8017.00
As13.209.7013.2015.2015.204.90011.901.500
Rb85.7066.2083.1089.3079.2089.2082.10112.0
Sr363.4328.4383.0272.2270.5207.4304.1350.0
Y33.6044.7027.1031.4045.3028.6035.1022.00
Zr616.81,087.1251.2391.91,252.21,240.4806.6190.0
Nb18.2023.1012.4015.8023.7013.8017.8012.00
Ba508.4517.5437.2585.4547.8588.7530.8550.0
La43.7057.9032.6039.3053.5039.7044.4030.00
Ce67.3089.2045.8059.0073.9052.9064.7064.00
Nd39.5054.7027.8035.7047.9024.4038.3026.00
SiO2*50.6350.7250.9154.0354.2460.3153.4765.89
Al2O3*10.839.10012.0312.1311.3712.2311.2815.17
Fe2O3*4.8604.5005.7305.6006.0602.3204.8504.490
MgO*4.1603.4203.7303.8504.2301.0403.4102.200
CaO*11.6013.718.7009.8107.3901.9108.8504.190
Na2O*2.4802.4904.4101.7701.8702.3402.5603.890
K2O*2.1201.6802.2502.3602.0802.5102.1703.390

Figure 5

Ternary relationships between Fe/Al, Mg/Al and Ca/Al for different dust source regions of China"

Figure 6

The scatter distribution of Rb/Sr and Ba/Sr for different dust source regions of China"

Figure 7

Variation of annual mean maximum wind velocity and the annual mean wind velocity in Jarud Banner and Balin Left Banner from 1970 to 2018"

Avecilla F , Panebianco JE , Buschiazzo DE , 2015. Variable effects of saltation and soil properties on wind erosion of different textured soils. Aeolian Research, 18: 145-153. DOI: 10.1016/j.aeolia.2015.07.005 .
doi: 10.1016/j.aeolia.2015.07.005
Avecilla F , Panebianco JE , Buschiazzo DE , et al. , 2018. A study on the fragmentation of saltating particles along the fetch distance during wind erosion. Aeolian Research, 35: 85-93. DOI: 10.1016/j.aeolia.2018.10.003 .
doi: 10.1016/j.aeolia.2018.10.003
Bagnold RA , 1941. The Physics of Wind Blown Sand and Desert Dunes. Methuen, London.
Bullard JE , Mctainsh GH , Pudmenzky C , 2004. Aeolian abrasion and modes of fine particle production from natural red dune sands: an experimental study. Blackwell Science Ltd, 51: 1103-1125. DOI: 10.1111/j.1365-3091.2004.00662.x .
doi: 10.1111/j.1365-3091.2004.00662.x
Chen SP , Lu CH , McQueen J , et al. , 2018a. Application of satellite observations in conjunction with aerosol reanalysis to characterize long-range transport of African and Asian dust on air quality in the contiguous U.S. Atmosphere Environment, 187: 174-195. DOI: 10.1016/j.atmosenv.2018.05.038 .
doi: 10.1016/j.atmosenv.2018.05.038
Chen SY , Jiang NX , Huang JP , et al. , 2018b. Quantifying contributions of natural and anthropogenic dust emission from different climatic regions. Atmosphere Environment,191: 94-104. DOI: 10.1016/j.atmosenv.2018.07.043 .
doi: 10.1016/j.atmosenv.2018.07.043
Cheng H , Zhang K , Liu C , et al. , 2018. Wind tunnel study of airflow recovery on the lee side of single plants. Agricultural and Forest Meteorology, 263: 362-372. DOI: 10.1016/j.agrformet.2018.08.025 .
doi: 10.1016/j.agrformet.2018.08.025
Cheng JJ , Lei JQ , Li SY , et al. , 2016. Disturbance of the inclined inserting-type sand fence to wind-sand flow fields and its sand control characteristics. Aeolian Research, 21: 139-150. DOI: 10.1016/j.aeolia.2016.04.008 .
doi: 10.1016/j.aeolia.2016.04.008
Dong GR , Jin J , Li BS , et al. , 1994. Several problems on the desertification of Horqin sandy land, Northeast China-A case study on its South area. Journal of Desert Research, 14: 1-9.
Dong ZB , Liu XP , Wang HT , et al. , 2003. The flux profile of a blowing sand cloud: a wind tunnel investigation. Geomorphology, 49(3): 219-230. DOI: 10.1016/S0169-555X(02)00170-8 .
doi: 10.1016/S0169-555X(02)00170-8
Dong ZB , Liu XP , Wang XM , 2002. Aerodynamic roughness of gravel surfaces. Geomorphology, 43:17-31. DOI: 10. 1016/S0169-555X(01)00097-6 .
doi: 10. 1016/S0169-555X(01)00097-6
Dong ZB , Qian GQ , 2007. Characterizing the height profile of the flux of wind-eroded sediment. Environmental Geology, 51(5): 835-845. DOI: 10.1007/s00254-006-0363-5 .
doi: 10.1007/s00254-006-0363-5
Dong ZB , Luo WY , Qian GQ , et al. , 2010. A wind tunnel simulation of the turbulence fields behind upright porous wind fences. Journal of Arid Environment, 74: 193-207. DOI: 10.1016/j.jaridenv.2009.03.015 .
doi: 10.1016/j.jaridenv.2009.03.015
Faraji M , Pourpak Z , Naddafi K , et al. , 2018. Effects of airborne particulate matter (PM10) from dust storm and thermal inversion on global DNA methylation in human peripheral blood mononuclear cells (PBMCs) in vitro. Atmosphere Environment,195: 170-178. DOI: 10.1016/j.atmosenv.2018.09.042 .
doi: 10.1016/j.atmosenv.2018.09.042
Folk RL , Ward WC , 1957. Brazos river bar: A study in the signification of grain size parameters. Journal of Sedimentary Petrology, 27(1): 3-26. DOI: 10.1306/74D70646-2B21-11D7-8648000102C1865D .
doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
Iturri LA , Funk R , Leue M , et al. , 2017. Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils. Aeolian Research, 28: 39-49. DOI: 10.1016/j.aeolia. 2017.07.005 .
doi: 10.1016/j.aeolia. 2017.07.005
Jia WR , Zhang CL , Zou XY , et al. , 2019. Effects of ridge height and spacing on the near-surface airflow field and on wind erosion of a sandy soil: Results of a wind tunnel study. Soil & Tillage Research, 186: 94-104. DOI: 10.1016/j.still.2018.10.005 .
doi: 10.1016/j.still.2018.10.005
Kurosaki Y , Shinoda M , Mikami M , 2011. What caused a recent increase in dust outbreaks over East Asia? Geophysical Research Letter, 38(11): L11702. DOI: 10.1029/2011GL047494 .
doi: 10.1029/2011GL047494
Li B , Sherman DJ , 2015. Aerodynamics and morphodynamics of sand fences: A review. Aeolian Research, 17: 33-48. DOI: 10.1016/j.aeolia.2014.11.005 .
doi: 10.1016/j.aeolia.2014.11.005
Li G , Zhang J , Herrmann HJ , et al. , 2020. Study of aerodynamic grain entrainment in aeolian transport. Geophysical Research Letters, 47(11): e2019GL086574. DOI: 10.1029/2019GL086574 .
doi: 10.1029/2019GL086574
Li XL , Zhang HS , 2016. A study of determining dust emission thresholds over the Horqin sandy land area in Inner Mongolia. Acta. Meteorologica Sinica, 74: 76-88.
Liu B , Wagner LE , Ning D , et al. , 2017. Estimation of wind erosion from construction of a railway in arid Northwest China. International Soil and Water Conservation Research, 5: 102-108. DOI: info:doi/10.1016/j.iswcr.2017.04.005 .
doi: info:doi/10.1016/j.iswcr.2017.04.005
Liu J , Kimura R , 2018. Wind speed characteristics and blown sand flux over a gravel surface in a compact wind tunnel. Aeolian Research, 35: 39-46. DOI: 10.1016/j.aeolia.2018. 09.005 .
doi: 10.1016/j.aeolia.2018. 09.005
Liu MX , Wang JA , Yan P , et al. , 2006. Wind tunnel simulation of ridge-tillage effects on soil erosion from cropland. Soil & Tillage Research, 90: 242-249. DOI: 10.1016/j.still. 2005.10.005 .
doi: 10.1016/j.still. 2005.10.005
Miri A , Dragovich D , Dong ZB , 2018. The response of live plants to airflow-Implication for reducing erosion. Aeolian Research, 33: 93-105. DOI: 10.1016/j.aeolia.2018.06.002 .
doi: 10.1016/j.aeolia.2018.06.002
Miri A , Dragovich D , Dong ZB , 2018. Wind-borne sand mass flux in vegetated surfaces-Wind tunnel experiments with live plants. Catena, 172: 421-434. DOI: 10.1016/j.catena. 2018.09.006 .
doi: 10.1016/j.catena. 2018.09.006
O'Brien P , McKenna NC , 2012. A wind tunnel study of particle kinematics during crust rupture and erosion. Geomorphology, 173-174: 149-160. DOI: 10.1016/j.geomorph.2012.06.005 .
doi: 10.1016/j.geomorph.2012.06.005
Pi H , Sharratt B , 2017. Evaluation of the RWEQ and SWEEP in simulating soil and PM10 loss from a portable wind tunnel. Soil & Tillage Research, 170: 94-103. DOI: 10.1016/j.still.2017.03.007 .
doi: 10.1016/j.still.2017.03.007
Pi H , Sharratt B , Schillinger WF , et al. , 2018. Wind erosion potential of a winter wheat-summer fallow rotation after land application of biosolids. Aeolian Research, 32: 53-59. DOI: 10.1016/j.aeolia.2018.01.009 .
doi: 10.1016/j.aeolia.2018.01.009
Qin XG , Liu JQ , Qiu SW , et al. , 2010. Development and evolution of Horqin sandy land and ancient hydrological networks. Quaternary Sciences, 30: 80-95. DOI: 10.3969/j.issn.1001-7410.2010.01.08 .
doi: 10.3969/j.issn.1001-7410.2010.01.08
Richon C , Dutay JC , Dulac F , et al. , 2018. Modeling the impacts of atmospheric deposition of nitrogen and desert dust-derived phosphorus on nutrients and biological budgets of the Mediterranean Sea. Progress in Oceanography, 163: 21-39. DOI: 10.1016/j.pocean.2017.04.009 .
doi: 10.1016/j.pocean.2017.04.009
Robichaud PR , Jennewein J , Sharratt BS , et al. , 2017. Evaluating the effectiveness of agricultural mulches for reducing post-wildfire wind erosion. Aeolian Research, 27: 13-21. DOI: 10.1016/j.aeolia.2017.05.001 .
doi: 10.1016/j.aeolia.2017.05.001
Schweitzer MD , Calzadilla AS , Salamo O , et al. , 2018. Lung health in era of climate change and dust storms. Environmental Resarch, 163: 36-42. DOI: 10.1016/j.envres.2018. 02.001 .
doi: 10.1016/j.envres.2018. 02.001
Shen Y , Zhang C , Wang X , et al. , 2018. Statistical characteristics of wind erosion events in the erosion area of Northern China. Catena, 167: 399-410. DOI: 10.1016/j.catena. 2018.05.020 .
doi: 10.1016/j.catena. 2018.05.020
Silva FC , Borrego C , Keizer JJ , et al. , 2015. Effects of moisture content on wind erosion thresholds of biochar. Atmosphere Environment, 123: 121-128. DOI: 10.1016/j.atmosenv.2015.10.070 .
doi: 10.1016/j.atmosenv.2015.10.070
Sweeney MR , McDonald EV , Markley CE , 2013. Alluvial sediment or playas: what is the dominant source of sand and silt in desert soil vesicular A horizons, southwest USA. Journal of Geophysical Research: Earth Surface, 118: 257-275. DOI: 10.1002/jgrf.20030 .
doi: 10.1002/jgrf.20030
Wang HB , Jia XP , Li K , et al. , 2015. Horizontal wind erosion flux and potential dust emission in arid and semiarid regions of China: A major source area for East Asia dust storms. Catena, 133: 373-384. DOI:10.1016/j.catena.2015.06.011 .
doi: 10.1016/j.catena.2015.06.011
Wang L , Shi ZH , Wu GL , et al. , 2014. Freeze/thaw and soil moisture effects on wind erosion. Geomorphology, 207: 141-148. DOI: 10.1016/j.geomorph.2013.10.032 .
doi: 10.1016/j.geomorph.2013.10.032
Wang T , Qu JJ , Ling YQ , et al. , 2018. Shelter effect efficacy of sand fences: A comparison of systems in a wind tunnel. Aeolian Research, 30: 32-40. DOI: 10.1016/j.aeolia.2017. 11.004 .
doi: 10.1016/j.aeolia.2017. 11.004
Wang XM , Hua T , Zhang CX , et al. , 2012. Aeolian salts in Gobi deserts of the western region of Inner Mongolia: Gone with the dust aerosols. Atmosphere Environment, 118: 1-9. DOI: 10.1016/j.atmosres.2012.06.003 .
doi: 10.1016/j.atmosres.2012.06.003
Wang XM , Lang LL , Hua T , et al. , 2018. The effects of sorting by aeolian processes on the geochemical characteristics of surface materials: a wind tunnel experiment. Frontiers of Earth Science, 12(1): 86-94. DOI: 10.1007/s11707-017-0619-2 .
doi: 10.1007/s11707-017-0619-2
Wang XM , Lou JP , Ma WY , et al. , 2017. The impact of reclamation on aeolian desertification of four species in the Otindag Desert, China. Catena, 157: 189-194. DOI: 10. 1016/j.catena.2017.05.024 .
doi: 10. 1016/j.catena.2017.05.024
Zhang CX , Wang XM , Dong ZB , et al. , 2017a. Aeolian process of the dried-up riverbeds of the Hexi Corridor, China: a wind tunnel experiment. Environmental Monitoring and Assessment, 189. DOI: 10.1007/s10661-017-6132-y .
doi: 10.1007/s10661-017-6132-y
Zhang J , Teng ZJ , Huang N , et al. , 2016. Surface renewal as a significant mechanism for dust emission. Atmospheric Chemistry & Physics, 16: 15517-15528. DOI: 10.5194/acp-2016-421 .
doi: 10.5194/acp-2016-421
Zhang ZC , Dong ZB , Zhang CX , et al. , 2017b. The geochemical characteristics of dust material and dust sources identification in northwestern China. Journal of Geochemical Exploration, 175: 148-155. DOI: 10.1016/j.gexplo.2016.11.006 .
doi: 10.1016/j.gexplo.2016.11.006
Zhou Y , Yang XP , Zhang DG , et al. , 2021. Sedimentological and geochemical characteristics of sediments and their potential correlations to the processes of desertification along the Keriya River in the Taklamakan Desert, western China. Geomorphology, 375: 107560. DOI: 10.1016/j.geomorph. 2020.107560 .
doi: 10.1016/j.geomorph. 2020.107560
[1] XuYang Liu,WenXiao Ning,ZhenTing Wang. Theoretical expressions for soil particle detachment rate due to saltation bombardment in wind erosion [J]. Sciences in Cold and Arid Regions, 2020, 12(4): 234-241.
[2] WenDa Huang, XueYong Zhao, YuLin Li, YuQiang Li, YaYong Luo. Relationship between the haplotype distribution of Artemisia halodendron (Asteraceae) and hydrothermal regions in Horqin Sandy Land, northern China [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 151-158.
[3] HeQiang Du, Tao Wang, Xian Xue. Field determination for roughness length above the different non-erodible surfaces [J]. Sciences in Cold and Arid Regions, 2017, 9(1): 67-77.
[4] YuQiang Li, JianPeng Zhang, XueYong Zhao, TongHui Zhang, YuLin Li, XinPing Liu, YinPing Chen. Comparison of soil physico-chemical properties under different land-use and cover types in northeastern China's Horqin Sandy Land [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 495-506.
[5] YongQing Luo, XueYong Zhao, JiePing Ding, Tao Wang. Vertical distribution of Artemisia halodendron root system in relation to soil properties in Horqin Sandy Land, NE China [J]. Sciences in Cold and Arid Regions, 2016, 8(5): 411-418.
[6] ShengBo Xie, JianJun Qu, Tao Wang. Wind tunnel simulation of the effects of freeze-thaw cycles on soil erosion in the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2016, 8(3): 187-195.
[7] ChaoFeng Fu, JingBo Zhao, FanMin Mei, TianJie Shao, Jun Zuo. Vertical distribution of soil moisture and surface sandy soil wind erosion for different types of sand dune on the southeastern margin of the Mu Us Sandy Land, China [J]. Sciences in Cold and Arid Regions, 2015, 7(6): 675-686.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!