Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (6): 491-502.doi: 10.3724/SP.J.1226.2020.00491

Previous Articles     Next Articles

Glacier changes in the Qaidam Basin from 1977 to 2018

SuGang Zhou,XiaoJun Yao(),Yuan Zhang,DaHong Zhang,Juan Liu,HongYu Duan   

  1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou, Gansu 730070, China
  • Received:2020-05-15 Accepted:2020-09-01 Online:2020-12-31 Published:2021-01-14
  • Contact: XiaoJun Yao E-mail:yaoxj_nwnu@163.com

Abstract:

Based on Landsat MSS/TM/OLI remote sensing images, glaciers vector data in the Qaidam Basin were extracted for 1977, 2002, and 2018, and their spatial-temporal variations were analyzed. Results show that there were 2,050 glaciers covering an area of 1,693.54±40.96 km2 and having an ice volume of 108.65±2.43 km3 in the Qaidam Basin in 2018. Glaciers with areas <1.0 km2 accounted for the largest number, while glaciers with areas of 1.0-5.0 km2 accounted for the most glacierized area. In the past 50 years, the number of glaciers decreased by 177, and the glacier area and volume reduced by 338.08 km2 (-8.12 km2/a) and 19.92 km3 (-0.48 km3/a), respectively. Retreat altitudes of glaciers were concentrated at 4,900-5,600 m, 4,700-5,200 m, and 5,000-5,600 m and reduced areas accounted for 95.53%, 77.80%, and 69.19% in the Kunlun, Qilian, and Altun mountains, respectively. The area of north-oriented glaciers decreased the most (-125.43 km2), but the west- and east-oriented glaciers retreated at the fastest rate (i.e., -27.11% and -27.10%). All glaciers showed a decreasing trend in sub-regions of the Qaidam Basin from 1977 to 2018. The decreasing trend was accelerated gradually from northwest to southeast in the northern part of the basin, while glacier change was the smallest in the middle section and gradually accelerated towards both ends of the basin's southern part. The temperature had continued to rise, and the precipitation had increased slowly in the Qaidam Basin during the past 50 years. The continuous rise in air temperature was the main reason for the retreat of glaciers.

Key words: glacier change, climate change, Landsat, Qaidam Basin

Figure 1

The distribution of glaciers in the Qaidam Basin"

Table 1

Landsat images used for glacier interpretation of the Qaidam Basin from 1977 to 2018"

Orbit number

Acquisition date

(Year-Month-Day)

SensorOrbit number

Acquisition date

(Year-Month-Day)

Sensor
PathRowPathRow
144331977-06-11MSS137332000-07-29, 2000-08-30TM
144341977-08-22MSS137352000-07-29, 2000-08-14, 2000-08-30TM
145331973-10-28MSS
145341977-04-19MSS138331999-08-19TM
145351976-11-26MSS138352001-07-23, 2002-08-27TM
146331977-04-20MSS139342000-08-28, 2001-07-14TM
146341973-12-22, 1977-04-20MSS139351996-07-16, 1997-07-19, 1998-09-08, 1999-07-25TM
146351977-02-25MSS
147331978-06-09MSS140332001-07-21, 1997-08-27, 1999-08-17, 2004-07-29, 2001-09-23TM
147351977-02-26MSS
148331977-08-26MSS
148351976-11-29MSS141342000-08-10, 2000-08-26TM
149341977-08-27MSS134332019-08-14OLI
149351977-08-27MSS135332018-07-17OLI
150341972-10-02MSS135342016-07-27, 2017-08-15OLI
151331972-10-03MSS135352015-08-10, 2016-07-27, 2017-08-15OLI
151341972-10-03MSS
152341973-09-11MSS136332019-08-28OLI
133352000-06-15TM136342016-07-02, 2018-07-24OLI
134332000-07-24TM136352015-08-01, 2018-07-24OLI
134342002-07-30TM137352015-08-24, 2017-07-28, 2019-09-04OLI
135332000-07-15TM
135342000-07-15, 2002-08-22TM138332016-08-01, 2018-08-07OLI
135351999-07-29, 2000-07-15, 2001-07-02, 2001-08-03TM138352017-07-19, 2019-09-11OLI
139342016-08-08, 2019-09-02OLI
136332000-07-22, 2002-08-29TM139352015-08-22, 2018-05-26OLI
136341999-09-06TM140332018-09-06OLI
136351999-07-20, 2000-07-22, 2002-08-29TM140342017-08-02OLI
141342016-08-06OLI

Figure 2

Number and area of glaciers of different sizes in the Qaidam Basin in 2018"

Table 2

Glacier resources of various mountain systems in the Qaidam Basin"

MountainNumberArea (km2)Volume (km3)
Kunlun Mountains1,36866.84%1,146.06±26.2767.67%76.43±1.5470.57%
Altun Mountains803.88%45.16±1.712.67%2.16±0.122.00%
Qilian Mountains60229.27%502.31±12.9829.66%29.70±0.8127.43%

Table 3

Glacier statistics in different basins in the Qaidam Basin"

Basin codeBasinNumberArea (km2)Volume (km3)
5Y51Qinghai Lake241.17%8.83±0.480.52%0.33±0.030.31%
5Y52Qaidam River834.05%13.39±0.920.79%0.38±0.050.35%
5Y53Golmud River41620.29%279.16±8.5216.48%13.76±0.6812.71%
5Y54Taijnar River59729.12%728.21±12.4243.00%56.67±1.852.33%
5Y55Gaskul Lake42520.73%212.53±7.3112.55%9.64±0.578.91%
5Y56Haltang River29414.34%314.98±7.4318.60%20.15±0.518.61%
5Y57Har Lake1115.41%72.96±2.154.31%4.29±0.123.96%
5Y58Yuka-tatalin Gol River904.39%61.56±1.623.63%3.02±0.152.79%
5Y59Bayan Gol River100.49%1.92±0.110.11%0.05±0.010.05%

Table 4

Glacier statistics in administrative divisions in the Qaidam Basin"

Province (Autonomous region)City (Autonomous prefecture)NumberArea (km2)Volume (km3)
GansuJiuquan26012.62%230.11±6.2413.59%13.75±0.3612.7%
QinghaiHaixi Mongol and Tibetan Autonomous Prefecture1,20558.79%842.2±22.4749.73%45.04±1.7141.59%
Yushu Tibetan Autonomous Prefecture2019.90%425.28±5.6425.11%40.48±1.9337.38%
XinjiangBayingguole Mongol Autonomous Prefecture38418.69%195.91±6.6111.57%9.03±0.518.33%

Figure 3

The changes in the number and area of glaciers in different sizes in the Qaidam Basin from 1977 to 2018"

Figure 4

Glacier area variations with the altitudinal range in the Qaidam Basin from 1977 to 2018"

Figure 5

Orientational characteristics of glacier changes in the Qaidam Basin from 1977 to 2018"

Figure 6

Glacier changes in different mountains in the Qaidam Basin"

Figure 7

Glacier area changes of different sub-basins in the Qaidam Basin from 1977 to 2018"

Figure 8

The change of temperature in ablation and annual precipitation in the Qaidam Basin from 1977 to 2018"

Dai S, Shen HY, Li L, et al., 2013. Analysis on climatic transition characteristic from warm-dry to warm-wet in Tsaidam Basin. Plateau Meteorology, 32(1): 211-220. DOI: 1000-0534(2013)01-0211-10.
doi: 1000-0534(2013)01-0211-10
Duan HY, Yao XJ, Liu SY, et al., 2019. Glacier change in the Tanggula Mountains, Tibetan Plateau, in 1969-2015. Journal of Mountain Science, 16: 2663-2678. DOI: 10.1007/s11629-018-5011-5.
doi: 10.1007/s11629-018-5011-5
Guan CX, 1960. Glaciers and glacial deposits around the Tsaidam Basin. Geological Review, 20 (4): 179-181. DOI: CNKI:SUN:DZLP.0.1960-04-007.
doi: CNKI:SUN:DZLP.0.1960-04-007
GaoXQ, 2000. Discussion on the relationship between glacial fluctuation and climate change. Plateau Meteorology, 19(1): 9-16. DOI: 10.3321/j.issn:1000-0534.2000.01.002.
doi: 10.3321/j.issn:1000-0534.2000.01.002
Grinsted A, 2013. An estimate of global glacier volume. Cryosphere, 7: 141-151. DOI: 10.5194/tc-7-141-2013.
doi: 10.5194/tc-7-141-2013
Gartner-Roer I, Naegeli K, Huss M, et al., 2014. A database of worldwide glacier thickness observations. Global and Planetary Change, 122: 330-344. DOI: 10.1016/j.gloplacha. 2014.09.003.
doi: 10.1016/j.gloplacha. 2014.09.003
Guo WQ, Liu SY, Xu JL, et al., 2015. The second Chinese glacier inventory: data, methods and results. Journal of Glaciology, 61(226): 357-372. DOI: 10.3189/2015JoG14J209.
doi: 10.3189/2015JoG14J209
Hall DK, Bary KJ, Schnöer W, et al., 2003. Consideration of the errors inherent in mapping historical glacier positions in Austria from ground and space (1893-2001). Remote Sensing of Environment, 86(4): 566-577. DOI: 10. 1016/s0034-4257(03)00134-2.
doi: 10. 1016/s0034-4257(03)00134-2
Huggel C, Kaab A, Haeberli W, et al., 2003. Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: Evaluation and application in the Swiss Alps. Natural Hazards and Earth System Sciences, 3(6): 647-662. DOI: 10.5194/nhess-3-647-2003.
doi: 10.5194/nhess-3-647-2003
Huntington TG, 2006. Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology, 319(1-4): 83-95. DOI: 10.1016/j. jhydrol.2005.07.003.
doi: 10.1016/j. jhydrol.2005.07.003
He Y, Yang TB, 2014. Climate variation and glacier response in the Bogda Region, Tianshan Mountains. Progress in Geography, 33(10): 1387-1396. DOI: 10.11820/dlkxjz.2014. 10.010.
doi: 10.11820/dlkxjz.2014. 10.010
Immerzeel WW, Van Beek LPH, Bierkens MFP, 2010. Climate change will affect the Asian water towers. Science, 328(5984): 1382-1385. DOI: 10.1126/science.1183188.
doi: 10.1126/science.1183188
Kääb A, Treichler D, Nuth C, et al., 2015. Brief communication: contending estimates of 2003-2008 glacier mass balance over the Pamir-Karakoram-Himalaya. Cryosphere, 7(4): 1263-1286. DOI: 10.5194/tc-9-557-2015.
doi: 10.5194/tc-9-557-2015
Liu SY, Sun WX, Shen YP, et al., 2003. Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply. Journal of Glaciology, 49(164): 117-124. DOI: 10.3189/172756503781830926.
doi: 10.3189/172756503781830926
Liu SY, Shangguan DH, Ding YJ, et al., 2005. Glacier variations since the early 20th century in the Gangrigabu Range, southeast Tibetan Plateau. Journal of Glaciology and Geocryology, 27(1): 55-63. DOI: 10.3969/j.issn.1000-0240. 2005.01.008.
doi: 10.3969/j.issn.1000-0240. 2005.01.008
Li L, Chen XG, Wang ZY, et al., 2010. Climate change and its regional differences over the Tibetan Plateau. Advances in Climate Change Research, 6(3): 181-186. DOI: 10.3788/gzxb20103906.0998.
doi: 10.3788/gzxb20103906.0998
Li ZG, Yao TD, Ye QH, et al., 2011. Monitoring glacial variations based on remote sensing in the Luozha region, eastern Himalayas, 1980-2007. Journal of Geographical Research, 30(5): 939-953. DOI: 10.1007/s11589-011-0776-4.
doi: 10.1007/s11589-011-0776-4
Liu SY, Yao XJ, Guo WQ, et al., 2015. The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geographica Sinica, 70(1): 3-16. DOI: 10.11821/dlxb201501001.
doi: 10.11821/dlxb201501001
Lu N, 2015. RS-based monitoring of glacier change in Qaidam Basin. Yellow River, 37(2): 16-18. DOI: 10. 3969/j.issn. 1000-1379. 2015.02. 005.
doi: 10. 3969/j.issn. 1000-1379. 2015.02. 005
Liu J, Yao XJ, Liu SY, et al., 2020. Glacial changes in the Gangdisê Mountains from 1970 to 2016. Journal of Geographical Sciences, 30(1): 131-144. DOI: 10.1007/s11442-020-1719-6.
doi: 10.1007/s11442-020-1719-6
Jiang ZL, Zhang JL, Zhang Z, et al., 2019. Glacier change and mass balance (1972-2011) in Ulugh Muztagh, eastern Kunlun Mountains, monitored by remote sensing. Remote Sensing for Land & Resources, 31(04): 128-136. DOI: 10.6046/gtzyyg.2019.04.17.
doi: 10.6046/gtzyyg.2019.04.17
Oerlemans J, 2005. Extracting a climate signal from 169 glacier records. Science, 308(5722): 675-677. DOI: 10.1126/science.1107046.
doi: 10.1126/science.1107046
Pu JC, Yao TD, Wang NL, et al., 2004. Fluctuations of the glaciers on the Qinghai-Tibetan Plateau during the past century. Journal of Glaciology and Geocryology, 26(5): 517-522. DOI: 10.1007/BF02873097.
doi: 10.1007/BF02873097
Piao SL, Ciais P, Huang Y, et al., 2010. The impacts of climate change on water resources and agriculture in China. Nature, 467(7311): 43-51. DOI: 10.1038/nature09364.
doi: 10.1038/nature09364
Qiu J, 2008. China: The third pole. Nature, 454(7203): 393-396. DOI: 10.1038/454393a.
doi: 10.1038/454393a
Qiu J, 2010. Measuring the meltdown. Nature, 468(7321): 141-142. DOI: 10.1038/468141a.
doi: 10.1038/468141a
Ren GY, Chu ZY, Zhou YQ, et al., 2005. Recent progresses in studies of regional temperature changes in China. Climate and Environmental Research, 10(4): 701-716. DOI: 10. 1007/s10409-004-0010-x.
doi: 10. 1007/s10409-004-0010-x
Radić V, Hock R, 2010. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. Journal of Geophysical Research, 115: F01010. DOI: 10.1029/2009JF001373.
doi: 10.1029/2009JF001373
Su Z, 1995. Glacier water resources and rational use in the Qaidam Basin. Symposium on Resources, Environment and Development of Qinghai Province. pp. 164-168.
Shi YF, Liu SY, 2000. Estimation on the response of glaciers in China to the global warming in the 21st century. Chinese Science Bulletin, 45(4): 434-438. DOI: 10.1360/csb2000-45-4-434.
doi: 10.1360/csb2000-45-4-434
Shi YF, 2005. A Concise China Glacier Inventory. Shanghai Science Popular Press, Shanghai. DOI: http://ir.casnw.net/handle/362004/21402.
doi: http://ir.casnw.net/handle/362004/21402
ShangGuan DH, Liu SY, Ding LF, et al., 2008. Variation of Glaciers in the western Nyainqüntanglha range of Tibetan Plateau during 1970-2000. Journal of Glaciology and Geocryology, 30(2): 204-210. DOI: CNKI: SUN: BCDT.0.2008-02-004.
doi: CNKI: SUN: BCDT.0.2008-02-004
Sun MP, Li ZQ, Yao XJ, et al., 2012. Analysis on runoff variation of Glacier No. 1 at the Headwatersof the Urumqi River from 1959 to 2008. Journal of Natural Resources, 27(4): 650-660. DOI: 10.1007/s11783-011-0280-z.
doi: 10.1007/s11783-011-0280-z
Sun MP, Liu SY, Yao XJ, et al., 2018. Glacier changes in the Qilian Mountains in the past half century: based on the revised first and second Chinese glacier inventory. Journal of Geographical Sciences, 28(2): 206-220. DOI: 10.1007/s11442-018-1468-y.
doi: 10.1007/s11442-018-1468-y
Wang XJ, Yang MX, et al., 2014. The dramatic climate warming in the Qaidam Basin, northeastern Tibetan Plateau, during 1961-2010. International Journal of Climatology, 34: 1524-1537. DOI: 10.1002/joc.3781.
doi: 10.1002/joc.3781
Xie ZC, Liu CH, 2010. Introduction to Glaciology. Shanghai: Shanghai Science Popular Press, pp. 425-426.
Xing SG, Zhang CY, Li SG, et al., 2018. Analysis on climate change and precipitation characteristics of Qaidam Basin from 1966 to 2015. Journal of Qinghai Environment, 28(2): 64-71. DOI: 10.3969/j.issn.1007-2454.2018.02.002.
doi: 10.3969/j.issn.1007-2454.2018.02.002
Yang HA, An HZ, 1986. The distribution of existing glaciers in the Qaidan Basin. Journal of Glaciology and Geocryology, 8(2): 171-175.
Yao TD, 2010. Glacial fluctuations and its impacts on lakes in the southern Tibetan Plateau. Chinese Science Bulletin, 55(18): 1749. DOI: CNKI:SUN:KXTB.0.2010-18-001.
doi: CNKI:SUN:KXTB.0.2010-18-001
Yao TD, Thompson L, Yang W, 2012. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nature Climate Change, 1580: 1-5. DOI: 10. 1038/nclimate1580.
doi: 10. 1038/nclimate1580
Yao XJ, Liu SY, Sun MP, et al., 2012. Glacier change of Altay Mountain in China from 1960 to 2009—Based on the second glacier inventory of China. Journal of Natural Resources, 27(10): 1734-1745. DOI: CNKI:SUN:ZRZX.0.2012-10-010.
doi: CNKI:SUN:ZRZX.0.2012-10-010
Yao XJ, Liu SY, Sun MP, et al., 2014. Study on the glacial lake outburst flood events in Tibet since the 20th Century. Journal of Natural Resources, 29(8): 1377-1390. DOI: 10. 11849/zrzyxb.2014.08.010.
doi: 10. 11849/zrzyxb.2014.08.010
Ye QH, Cheng WM, Zha YL, et al., 2016. A review on the research of glacier changes on the Tibetan Plateau by Remote Sensing Technologies. Journal of Geo-Information Science, 18(07): 920-930. DOI: 10.3724/SP.J.1047.2016.00920.
doi: 10.3724/SP.J.1047.2016.00920
Ye Q, Zong J, Tian L, et al., 2017. Glacier changes on the Tibetan Plateau derived from Landsat imagery: Mid-1970s- 2000-13. Journal of Glaciology, 63(238): 273-287. DOI: 10.1017/jog.2016.137.
doi: 10.1017/jog.2016.137
Yao TD, Yu WS, Wu GJ, et al., 2019. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings. Chinese Science Bulletin, 64(27): 2770-2782. DOI: 10.1360/TB-2019-0246.
doi: 10.1360/TB-2019-0246
Zhang SQ, Lu J, Liu SY, 2001. Deriving glacier border information on Qinghai Tibet by TM High Spectrum Image. Geomatics and Information Science of Wuhan University, (5): 435-440. DOI: CNKI:SUN:WHCH.0.2001-05-010.
doi: CNKI:SUN:WHCH.0.2001-05-010
Zhang JT, He XJ, ShangGuan DH, et al., 2012. Impact of intensive glacier ablation on arid regions of Northwest China and its countermeasure. Journal of Glaciology and Geocryology, 34(4): 848-854. DOI: http://ir.casnw.net/handle/362004/8491.
doi: http://ir.casnw.net/handle/362004/8491
Zhu HY, Yang TB, Tian HZ, 2013. Glacier variation in the Altun Mountains from 1973 to 2010. Geographical Research, 32(8): 1430-1438. DOI: CNKI:SUN:DLYJ.0.2013-08-008.
doi: CNKI:SUN:DLYJ.0.2013-08-008
[1] Guang Song,BingYao Wang,JingYao Sun,YanLi Wang,XinRong Li. Response of revegetation to climate change with meso- and micro-scale remote sensing in an arid desert of China [J]. Sciences in Cold and Arid Regions, 2021, 13(1): 43-52.
[2] ShiYin Liu,TongHua Wu,Xin Wang,XiaoDong Wu,XiaoJun Yao,Qiao Liu,Yong Zhang,JunFeng Wei,XiaoFan Zhu. Changes in the global cryosphere and their impacts: A review and new perspective [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 343-354.
[3] ZhongQin Li,HuiLin Li,ChunHai Xu,YuFeng Jia,FeiTeng Wang,PuYu Wang,XiaoYing Yue. 60-year changes and mechanisms of Urumqi Glacier No. 1 in the eastern Tianshan of China, Central Asia [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 380-388.
[4] Xin Wang,Qiao Liu,ShiYin Liu,GuangLi He. Manifestations and mechanisms of mountain glacier-related hazards [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 436-446.
[5] LingMei Xu,Yu Li,WangTing Ye,XinZhong Zhang,YiChan Li,YuXin Zhang. Holocene lake carbon sequestration, hydrological status and vegetation change, China [J]. Sciences in Cold and Arid Regions, 2019, 11(4): 295-326.
[6] Jing Li,ShiYin Liu,Qiao Liu. MODIS observed snow cover variations in the Aksu River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 208-217.
[7] JianPing Yang, Man Li, ChunPing Tan, HongJu Chen, Qin Ji. Vulnerability and adaptation of an oasis social–ecological system affected by glacier change in an arid region of northwestern China [J]. Sciences in Cold and Arid Regions, 2019, 11(1): 29-40.
[8] RuiQing Li,YanHong Gao,DeLiang Chen,YongXin Zhang,SuoSuo Li. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 482-492.
[9] Na Li, ChangZhen Yan, JiaLi Xie, JianXia Ma. Cultivated-land change in Mu Us Sandy Land of China before and after the first-stage grain-for-green policy [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 347-353.
[10] Stuart A. Harris, HuiJun Jin, RuiXia He, SiZhong Yang. Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 187-206.
[11] ZuHan Liu, JianHua Xu, WeiHong Li. Complex network analysis of climate change in the Tarim River Basin, Northwest China [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 476-487.
[12] Sanjaya Gurung, Bikas C. Bhattarai, Rijan B. Kayastha, Dorothea Stumm, Sharad P. Joshi, Pradeep K. Mool. Study of annual mass balance (2011-2013) of Rikha Samba Glacier, Hidden Valley, Mustang,Nepal [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 311-318.
[13] Wei Liu, ZongXing Li, Meng Zhu, XiaoYan Guo, LiJuan Chen. Temperature and precipitation changes in Extensive Hexi Region, China, 1960-2011 [J]. Sciences in Cold and Arid Regions, 2016, 8(3): 212-226.
[14] Jie Xue, JiaQiang Lei, DongWei Gui, JianPing Zhao, DongLei Mao, Jie Zhou. Synchronism of runoff response to climate change in Kaidu River Basin in Xinjiang, Northwest China [J]. Sciences in Cold and Arid Regions, 2016, 8(1): 82-94.
[15] ZhiWen Xiong, YongPeng Yang, ZhaoRong Zhu, XiangQing Zhao, HanCheng Cai. Effect of climate change and railway embankment on the degradation of underlain permafrost [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 554-559.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] Yong Chen, Tao Wang, LiHua Zhou, Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .