Sciences in Cold and Arid Regions ›› 2018, Vol. 10 ›› Issue (5): 392-403.doi: 10.3724/SP.J.1226.2018.00392
Previous Articles Next Articles
Zhuo Ga1,2,*(),Za Dui3,Duodian Luozhu3,Jun Du2
1 |
Bao XH, Zhang FQ, Sun JH Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Monthly Weather Review 2011; 139: 9 2790- 2810.
doi: 10.1175/MWR-D-11-00006.1 |
2 |
Chen YL, Chen DH, Li ZC, et al. Preliminary studies on the dynamic prediction method of rainfall-triggered landslide. Journal of Mountain Science 2016; 13: 10 1735- 1745.
doi: 10.1007/s11629-014-3110-5 |
3 |
Dai AG, Fung IY, Del Genio AD Surface observed global land precipitation variations during 1900–88. Journal of Climate 1997; 10: 11 2943- 2962.
doi: 10.1175/1520-0442(1997)010<2943:SOGLPV>2.0.CO;2 |
4 |
Duan AM, Wu GX Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dynamics 2005; 24: 7–8 793- 807.
doi: 10.1007/s00382-004-0488-8 |
5 |
Ensor LA, Robeson SM Statistical characteristics of daily precipitation: comparisons of gridded and point datasets. Journal of Applied Meteorology and Climatology 2008; 47: 9 2468- 2476.
doi: 10.1175/2008JAMC1757.1 |
6 |
Groisman PY, Koknaeva VV, Belokrylova TA, et al. Overcoming biases of precipitation measurement: a history of the USSR experience. Bulletin of the American Meteorological Society 1991; 72: 11 1725- 1733.
doi: 10.1175/1520-0477(1991)072<1725:OBOPMA>2.0.CO;2 |
7 | Hutchinson MF Interpolation of rainfall data with thin plate smoothing splines — part I: two dimensional smoothing of data with short range correlation. Journal of Geographic Information and Decision Analysis 1998a; 2: 2 139- 151. |
8 | Hutchinson MF Interpolation of rainfall data with thin plate smoothing splines — part II: analysis of Topographic dependence. Journal of Geographic Information and Decision Analysis 1998b; 2: 2 152- 167. |
9 |
Juárez RIN, Li WH, Fu R, et al. Comparison of precipitation datasets over the tropical south American and African continents. Journal of Hydrometeorology 2009; 10: 1 289- 299.
doi: 10.1175/2008JHM1023.1 |
10 |
Karl TR, Quayle RG, Groisman PY Detecting climate variations and change: new challenges for observing and data management systems. Journal of Climate 1993; 6: 8 1481- 1494.
doi: 10.1175/1520-0442(1993)006<1481:DCVACN>2.0.CO;2 |
11 |
Kidd C, Dawkins E, Huffman G Comparison of precipitation derived from the ECMWF operational forecast model and satellite precipitation datasets. Journal of Hydrometeorology 2013; 14: 5 1463- 1482.
doi: 10.1175/JHM-D-12-0182.1 |
12 |
Klein Tank AMG, Wijngaard JB, Können GP, et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology 2002; 22: 12 1441- 1453.
doi: 10.1002/joc.773 |
13 |
Legates DR, Willmott CJ Mean seasonal and spatial variability in gauge-corrected, global precipitation. International Journal of Climatology 1990; 10: 2 111- 127.
doi: 10.1002/joc.3370100202 |
14 |
Li YQ, Li DJ, Yang S, et al. Characteristics of the precipitation over the eastern edge of the Tibetan Plateau. Meteorology and Atmospheric Physics 2010; 106: 1–2 49- 56.
doi: 10.1007/s00703-009-0048-1 |
15 |
Liu Z Evaluation of precipitation climatology derived from TRMM multi-satellite precipitation analysis (TMPA) monthly product over land with two gauge-based products. Climate 2015; 3: 4 964- 982.
doi: 10.3390/cli3040964 |
16 |
Long QC, Chen QL, Gui K, et al. A case study of a heavy rain over the southeastern Tibetan Plateau. Atmosphere 2016; 7: 9 118.
doi: 10.3390/atmos7090118 |
17 |
Ma YZ, Tang GQ, Long D, et al. Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau. Remote Sensing 2016; 8: 7 569.
doi: 10.3390/rs8070569 |
18 |
Mastyło M Bilinear interpolation theorems and applications. Journal of Functional Analysis 2013; 265: 2 185- 207.
doi: 10.1016/j.jfa.2013.05.001 |
19 |
Maussion F, Scherer D, Mölg T, et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. Journal of Climate 2014; 27: 5 1910- 1927.
doi: 10.1175/JCLI-D-13-00282.1 |
20 | Schneider U, Becker A, Finger P, et al., 2011. GPCC full data reanalysis version 6.0 at (0.5°, 1.0°, 2.5°): monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Main, Germany: GPCC, DOI: 10.5676/DWD_GPCC/FD_M_V6_050. |
21 |
Şen Z, Habib Z Spatial analysis of monthly precipitation in Turkey. Theoretical and Applied Climatology 2000; 67: 1–2 81- 96.
doi: 10.1007/s007040070017 |
22 | Song SY, Wang PX, 2013. Tibet Climate. Beijing: Meteorological Press, pp. 35–73. |
23 |
Tong K, Su FG, Yang DQ, et al. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. International Journal of Climatology 2014; 34: 2 265- 285.
doi: 10.1002/joc.3682 |
24 |
Wu L, Zhai PM Validation of daily precipitation from two high-resolution satellite precipitation datasets over the Tibetan Plateau and the regions to its east. Acta Meteorologica Sinica 2012; 26: 6 735- 745.
doi: 10.1007/s13351-012-0605-2 |
25 | Xiao H Bilinear interpolation parallel algorithm based on GPU computing. Journal of Chinese Computer Systems 2011; 32: 11 2241- 2245. |
26 |
Xu Y, Gao XJ, Shen Y, et al. A daily temperature dataset over China and its application in validating a RCM simulation. Advances in Atmospheric Sciences 2009; 26: 4 763- 772.
doi: 10.1007/s00376-009-9029-z |
27 |
Yanai M, Li CF, Song ZS Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. Journal of the Meteorological Society of Japan 1992; 70: 1 319- 351.
doi: 10.2151/jmsj1965.70.1B_319 |
28 |
Yatagai A, Arakawa O, Kamiguchi K, et al. A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Scientific Online Letters on the Atmosphere 2009; 5: 1 137- 140.
doi: 10.2151/sola.2009-035 |
29 |
Yatagai A, Kamiguchi K, Arakawa O, et al. APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society 2012; 93: 9 1401- 1415.
doi: 10.1175/BAMS-D-11-00122.1 |
30 | Ye DZ, Gao YX, 1979. The Meteorology of the Qinghai-Xizang (Tibet) Plateau. Beijing: Science Press, pp. 1–278. |
31 |
You QL, Kang SC, Pepin N, et al. Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Global and Planetary Change 2010; 71: 1–2 124- 133.
doi: 10.1016/j.gloplacha.2010.01.020 |
32 |
You QL, Fraedrich K, Ren GY, et al. Inconsistencies of precipitation in the eastern and central Tibetan Plateau between surface adjusted data and reanalysis. Theoretical and Applied Climatology 2012; 109: 3–4 485- 496.
doi: 10.1007/s00704-012-0594-1 |
33 |
You QL, Min JZ, Zhang W, et al. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Climate Dynamics 2015; 45: 3–4 791- 806.
doi: 10.1007/s00382-014-2310-6 |
34 |
Zhang XL, Wang SJ, Zhang JM, et al. Temporal and spatial variability in precipitation trends in the southeast Tibetan Plateau during 1961–2012. Climate of the Past Discussions 2015; 11: 1 447- 487.
doi: 10.5194/cpd-11-447-2015 |
35 |
Zhao TB, Fu CB Comparison of products from ERA-40, NCEP-2, and CRU with station data for summer precipitation over China. Advances in Atmospheric Sciences 2006; 23: 4 593- 604.
doi: 10.1007/s00376-006-0593-1 |
[1] | Xia Zhao,JunFeng Wang,Yun Wang,Xiang Lu,ShaoFang Liu,YuBao Zhang,ZhiHong Guo,ZhongKui Xie,RuoYu Wang. Influence of proximity to the Qinghai-Tibet highway and railway on variations of soil heavy metal concentrations and bacterial community diversity on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2019, 11(6): 407-418. |
[2] | ZeYong Hu,ZhiPeng Xie. Origin and advances in implementing blowing-snow effects in the Community Land Model [J]. Sciences in Cold and Arid Regions, 2019, 11(5): 335-339. |
[3] | Rui Chen,MeiXue Yang,XueJia Wang,GuoNing Wan. Review on simulation of land-surface processes on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 93-115. |
[4] | HongWei Wang,Yuan Qi,ChunLin Huang,XiaoYing Li,XiaoHong Deng,JinLong Zhang. Analysis of vegetation changes and dominant factors on the Qinghai-Tibet Plateau, China [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 150-158. |
[5] | YanLi Xie, QiHao Yu, YanHui You, ZhongQiu Zhang, TingTao Gou. The changing process and trend of ground temperature around tower foundations of Qinghai-Tibet Power Transmission line [J]. Sciences in Cold and Arid Regions, 2019, 11(1): 13-20. |
[6] | Wei Cao,Yu Sheng,Ji Chen,JiChun Wu. Applying the AHP-FUZZY method to evaluate the measure effect of rubble roadbed engineering in permafrost regions of Qinghai-Tibet Plateau: a case study of Chaidaer-Muli Railway [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 447-457. |
[7] | RuiQing Li,YanHong Gao,DeLiang Chen,YongXin Zhang,SuoSuo Li. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 482-492. |
[8] | YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379-391. |
[9] | CaiXia Zhang,XunMing Wang,YongZhong Su,ZhiWen Han,ZhengCai Zhang,Ting Hua. Change in summer daily precipitation and its relation with air temperature in Northwest China during 1957–2016 [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 317-325. |
[10] | Stuart A. Harris, HuiJun Jin, RuiXia He, SiZhong Yang. Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 187-206. |
[11] | HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207-218. |
[12] | ZhenMing Wu, Lin Zhao, Lin Liu, Rui Zhu, ZeShen Gao, YongPing Qiao, LiMing Tian, HuaYun Zhou, MeiZhen Xie. Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 114-125. |
[13] | BenLi Liu, JianJun Qu, ShiChang Kang, Bing Liu. Climate change inferred from aeolian sediments in a lake shore environment in the central Tibetan Plateau during recent centuries [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 134-144. |
[14] | SiQiong Luo, BoLi Chen, ShiHua Lyu, XueWei Fang, JingYuan Wang, XianHong Meng, LunYu Shang, ShaoYing Wang, Di Ma. An improvement of soil temperature simulations on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 80-94. |
[15] | MingJun Zhang, ShengJie Wang. Precipitation isotopes in the Tianshan Mountains as a key to water cycle in arid central Asia [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 27-37. |
|