Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (1): 1-22.doi: 10.3724/SP.J.1226.2022.21049.
ShiWei Sun1,4,ShiChang Kang1,3,4(),QiangGong Zhang2,3,JunMing Guo1,4,XueJun Sun2,4
Agnan Y , Le Dantec T , Moore CW , et al. , 2016. New constraints on terrestrial surface-atmosphere fluxes of gaseous elemental mercury using a global database. Environmental Science & Technology, 50: 507-524. DOI: 10.1021/acs.est.5b04013 .
doi: 10.1021/acs.est.5b04013 |
|
Back RC , Watras CJ , 1995. Mercury in zooplankton of northern Wisconsin lakes-Taxonomic and site-specific trends. Water Air and Soil Pollution, 80 (1-4): 931-938. DOI: 10.1007/BF01189747 .
doi: 10.1007/BF01189747 |
|
Blais JM , Schindler DW , Muir DC , et al. , 2001. Melting glaciers: a major source of persistent organochlorines to subalpine Bow Lake in Banff National Park, Canada. Ambio, 30(7): 410-415. DOI: 10.1579/0044-7447-30.7.410 .
doi: 10.1579/0044-7447-30.7.410 |
|
Bogdal C , Schmid P , Zennegg M , et al. , 2009. Blast from the past: melting glaciers as a relevant source for persistent organic pollutants. Environmental Science & Technology, 43: 8173-8177. DOI: 10.1021/es901628x .
doi: 10.1021/es901628x |
|
Bogdal C , Nikolic D , Lüthi MP , et al. , 2010. Release of legacy pollutants from melting glaciers: model evidence and conceptual understanding. Environmental Science & Technology, 44: 4063-4069. DOI: 10.1021/es903007h .
doi: 10.1021/es903007h |
|
Bond AL , Hobson KA , Branfireun BA , 2015. Rapidly increasing methyl mercury in endangered ivory gull (Pagophila eburnea) feathers over a 130 year record. Proceedings Biological Sciences, 282: 20150032. DOI: 10.1098/rspb.2015. 0032 .
doi: 10.1098/rspb.2015. 0032 |
|
Ci Z , Peng F , Xue X , et al. , 2016. Air-surface exchange of gaseous mercury over permafrost soil: an investigation at a high-altitude (4,700 m asl) and remote site in the central Qinghai-Tibet Plateau. Atmospheric Chemistry and Physics, 16: 14741-14754. DOI: 10.5194/acp-16-14741-2016 .
doi: 10.5194/acp-16-14741-2016 |
|
Ci Z , Peng F , Xue X , et al. , 2018. Temperature sensitivity of gaseous elemental mercury in the active layer of the Qinghai-Tibet Plateau permafrost. Environmental Pollution, 238: 508-515. DOI: 10.1016/j.envpol.2018.02.085 .
doi: 10.1016/j.envpol.2018.02.085 |
|
Ci Z , Peng F , Xue X , et al. , 2020. Permafrost thaw dominates mercury emission in Tibetan thermokarst ponds. Environmental Science & Technology, 54: 5456-5466. DOI: 10. 1021/acs.est.9b06712 .
doi: 10. 1021/acs.est.9b06712 |
|
Dalziel J , 1995. Reactive mercury in the eastern North Atlantic and southeast Atlantic. Marine Chemistry, 49: 307-314. DOI: 10.1016/0304-4203(95)00020-R .
doi: 10.1016/0304-4203(95)00020-R |
|
Dommergue A , Ferrari CP , Gauchar PA , et al. , 2003. The fate of mercury species in a sub‐arctic snowpack during snowmelt. Geophysical Research Letters, 30(12): 1621-1625. DOI: 10.1029/2003GL017308 .
doi: 10.1029/2003GL017308 |
|
Dommergue A , Larose C , Faïn X , et al. , 2010. Deposition of mercury species in the Ny-Ålesund area (79°N) and their transfer during snowmelt. Environmental Science & Technology, 44: 901-907. DOI: 10.1021/es902579m .
doi: 10.1021/es902579m |
|
Durnford D , Dastoor A , 2011. The behavior of mercury in the cryosphere: A review of what we know from observations. Journal of Geophysical Research Atmospheres, 116(D6). DOI: 10.1029/2010JD014809 .
doi: 10.1029/2010JD014809 |
|
Ericksen J , Gustin M , Xin M , et al. , 2006. Air-soil exchange of mercury from background soils in the United States. Science of the Total Environment, 366: 851-863. DOI: 10. 1016/j.scitotenv.2005.08.019 .
doi: 10. 1016/j.scitotenv.2005.08.019 |
|
Ferrari CP , Dommergue A , Veysseyre A , et al. , 2002. Mercury speciation in the French seasonal snow cover. Science of the Total Environment, 287: 61-69. DOI: 10.1016/S0048-9697(01)00999-8 .
doi: 10.1016/S0048-9697(01)00999-8 |
|
Ferrari CP , Gauchard PA , Aspmo K , et al. , 2005. Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-Ålesund, Svalbard. Atmospheric Environment, 39: 7633-7645. DOI: 10.1016/j.atmosenv.2005.06.058 .
doi: 10.1016/j.atmosenv.2005.06.058 |
|
Fu X , Feng X , Zhu W , et al. , 2008. Total gaseous mercury concentrations in ambient air in the eastern slope of Mt. Gongga, South-Eastern fringe of the Tibetan plateau, China. Atmospheric Environment, 42: 970-979. DOI: 10.1016/j.atmosenv.2007.10.018 .
doi: 10.1016/j.atmosenv.2007.10.018 |
|
Fu X , Feng X , Zhu W , et al. , 2010. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China. Environmental Pollution, 158: 2324-2333. DOI: 10.1016/j.envpol.2010.01.032 .
doi: 10.1016/j.envpol.2010.01.032 |
|
Fu X , Feng X , Liang P , et al. , 2012. Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China. Atmospheric Chemistry and Physics, 12(4): 1951-1964. DOI: 10.5194/acp-12-1951-2012 .
doi: 10.5194/acp-12-1951-2012 |
|
Fu X , Zhang H , Wang X , et al. , 2015. Observations of atmospheric mercury in China: a critical review. Atmospheric Chemistry and Physics, 15(16): 9455-9476. DOI: 10.5194/acp-15-9455-2015 .
doi: 10.5194/acp-15-9455-2015 |
|
Gamberg M , Chételat J , Poulain AJ , et al. , 2015. Mercury in the Canadian Arctic terrestrial environment: An update. Science of the Total Environment, 509: 28-40. DOI: 10.1016/j.scitotenv.2014.04.070 .
doi: 10.1016/j.scitotenv.2014.04.070 |
|
Gu J , Pang Q , Ding J , et al. , 2020. The driving factors of mercury storage in the Tibetan grassland soils underlain by permafrost. Environmental Pollution, 265: 115079. DOI: 10. 1016/j.envpol.2020.115079 .
doi: 10. 1016/j.envpol.2020.115079 |
|
Guo J , Kang S , Huang J , et al. , 2017. Characterizations of atmospheric particulate-bound mercury in the Kathmandu Valley of Nepal, South Asia. Science of the Total Environment, 579: 1240-1248. DOI: 10.1016/j.scitotenv.2016. 11.110 .
doi: 10.1016/j.scitotenv.2016. 11.110 |
|
Guo J , Ram K , Tripathee L , et al. , 2020. Study on Mercury in PM10 at an Urban Site in the Central Indo-Gangetic Plain: seasonal variability and influencing factors. Aerosol and Air Quality Research, 20. DOI: 10.4209/AAQR.2019.12. 0630 .
doi: 10.4209/AAQR.2019.12. 0630 |
|
Gustin MS , Amos HM , Huang J , et al. , 2015. Measuring and modeling mercury in the atmosphere: a critical review. Atmospheric Chemistry and Physics, 15(10): 5697-5713. DOI: 10.5194/acp-15-5697-2015 .
doi: 10.5194/acp-15-5697-2015 |
|
Hammerschmidt CR , Lamborg CH , Fitzgerald WF , 2007. Aqueous phase methylation as a potential source of methylmercury in wet deposition. Atmospheric Environment, 41(8): 1663-1668. DOI: 10.1016/j.atmosenv.2006.10.032 .
doi: 10.1016/j.atmosenv.2006.10.032 |
|
Hock R , Rasul G , Adler C , et al. , 2019. High Mountain Areas: In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | |
Hood E , Battin TJ , Fellman J , et al. , 2015. Storage and release of organic carbon from glaciers and ice sheets. Nature Geoscience, 8: 91-96. DOI: 10.1038/ngeo2331 .
doi: 10.1038/ngeo2331 |
|
Huang J , 2011. Study on Spatial and Temporal Variations of Speciated Mercury in Precipitation of the Tibetan Plateau and Its Adjacent Regions. Ph.D Thesis, Graduate University of Chinese Academy of Sciences. (in Chinese) | |
Huang J , Kang S , Guo J , et al. , 2012a. Seasonal variations, speciation and possible sources of mercury in the snowpack of Zhadang glacier, Mt. Nyainqêntanglha, southern Tibetan Plateau. Science of the Total Environment, 429: 223-230. DOI: 10.1016/j.scitotenv.2012.04.045 .
doi: 10.1016/j.scitotenv.2012.04.045 |
|
Huang J , Kang S , Zhang Q , et al. , 2012b. Spatial distribution and magnification processes of mercury in snow from high-elevation glaciers in the Tibetan Plateau. Atmospheric Environment, 46: 140-146. DOI: 10.1016/j.atmosenv.2011. 10.008 .
doi: 10.1016/j.atmosenv.2011. 10.008 |
|
Huang J , Kang S , Zhang Q , et al. , 2012c. Wet deposition of mercury at a remote site in the Tibetan Plateau: concentrations, speciation, and fluxes. Atmospheric Environment, 62: 540-550. DOI: 10.1016/j.atmosenv.2012.09.003 .
doi: 10.1016/j.atmosenv.2012.09.003 |
|
Huang J , Kang S , Wang S , et al. , 2013. Wet deposition of mercury at Lhasa, the capital city of Tibet. Science of the Total Environment, 447: 123-132. DOI: 10.1016/j.scitotenv. 2013.01.003 .
doi: 10.1016/j.scitotenv. 2013.01.003 |
|
Huang J , Kang S , Guo J , et al. , 2014. Mercury distribution and variation on a high-elevation mountain glacier on the northern boundary of the Tibetan Plateau. Atmospheric Environment, 96: 27-36. DOI: 10.1016/j.atmosenv.2014.07.023 .
doi: 10.1016/j.atmosenv.2014.07.023 |
|
Huang J , Kang S , Zhang Q , et al. , 2015. Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau. Environmental Pollution, 206: 518-526. DOI: 10.1016/j.envpol.2015.07.024 .
doi: 10.1016/j.envpol.2015.07.024 |
|
Huang J , Kang S , Guo J , et al. , 2016a. Atmospheric particulate mercury in Lhasa city, Tibetan Plateau. Atmospheric Environment, 142: 433-441. DOI: 10.1016/j.atmosenv.2016. 08.021 .
doi: 10.1016/j.atmosenv.2016. 08.021 |
|
Huang J , Kang S , Tian L , et al. , 2016b. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet. Science of the Total Environment, 566: 1215-1222. DOI: 10.1016/j.scitotenv. 2016.05.177 .
doi: 10.1016/j.scitotenv. 2016.05.177 |
|
Huang J , Kang S , Yin R , et al. , 2020a. Desert dust as a significant carrier of atmospheric mercury. Environmental Pollution, 267: 115442. DOI: 10.1016/j.envpol.2020.115442 .
doi: 10.1016/j.envpol.2020.115442 |
|
Huang J , Kang S , Yin R , et al. , 2020b. Mercury isotopes in frozen soils reveal transboundary atmospheric mercury deposition over the Himalayas and Tibetan Plateau. Environmental Pollution, 256: 113432. DOI: 10.1016/j.envpol.2019. 113432 .
doi: 10.1016/j.envpol.2019. 113432 |
|
Immerzeel WW , Van Beek LP , Bierkens MF , 2010. Climate change will affect the Asian water towers. Science, 328: 1382-1385. DOI: 10.1126/science.1183188 .
doi: 10.1126/science.1183188 |
|
Jiskra M , Sonke JE , Obrist D , et al. , 2018. A vegetation control on seasonal variations in global atmospheric mercury concentrations. Nature Geoscience, 11: 244-250. DOI: 10. 1038/s41561-018-0078-8 .
doi: 10. 1038/s41561-018-0078-8 |
|
Kang S , Xu Y , You Q , et al. , 2010. Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 5: 015101. DOI: 10.1088/1748-9326/5/1/015101 .
doi: 10.1088/1748-9326/5/1/015101 |
|
Kang S , Huang J , Wang F , et al. , 2016. Atmospheric mercury depositional chronology reconstructed from lake sediments and ice core in the Himalayas and Tibetan Plateau. Environmental Science & Technology, 50: 2859-2869. DOI: 10.1021/acs.est.5b04172 .
doi: 10.1021/acs.est.5b04172 |
|
Kang S , Zhang Q , Qian Y , et al. , 2019. Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. National Science Review, 6: 796-809. DOI: 10.1093/nsr/nwz031 .
doi: 10.1093/nsr/nwz031 |
|
Kang S , Guo W , Wu T , et al. , 2020a. Cryospheric Changes and their impacts on water resources in the Belt and Road regions. Advances in Earth Science, 35(1): 1-17. DOI: 10.11867/j.issn.1001-8166.2020.002. (in Chinese)
doi: 10.11867/j.issn.1001-8166.2020.002. |
|
Kang S , Guo W , Zhon X , et al. , 2020b. Changes in the mountain cryosphere and their impacts and adaptation measures. Climate Change Research, 16: 143-152. DOI: 10.12006/j.issn.1673-1719.2019.257. (in Chinese)
doi: 10.12006/j.issn.1673-1719.2019.257. |
|
Khan TR , Obrist D , Agnan Y , et al. , 2019. Atmosphere-terrestrial exchange of gaseous elemental mercury: parameterization improvement through direct comparison with measured ecosystem fluxes. Environmental Science: Processes & Impacts, 21(10): 1699-1712. DOI: 10.1039/C9EM00341J .
doi: 10.1039/C9EM00341J |
|
Klaminder J , Yoo K , Rydberg J , et al. , 2008. An explorative study of mercury export from a thawing palsa mire. Journal of Geophysical Research Biogeosciences, 113: G04034. DOI: 10.1029/2008JG000776 .
doi: 10.1029/2008JG000776 |
|
Lalonde JD , Poulain AJ , Amyot M , 2002. The role of mercury redox reactions in snow on snow-to-air mercury transfer. Environmental Science & Technology, 36: 174-178. DOI: 10.1021/es010786g .
doi: 10.1021/es010786g |
|
Lalonde JD , Amyot M , Doyon MR , et al. , 2003. Photo‐induced Hg(II) reduction in snow from the remote and temperate Experimental Lakes Area (Ontario, Canada). Journal of Geophysical Research Atmospheres, 108(D6): 4200. DOI: 10.1029/2001JD001534 .
doi: 10.1029/2001JD001534 |
|
Lamborg CH , Fitzgerald WF , O'Donnell J , et al. , 2002. A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochimica et Cosmochimica Acta, 66: 1105-1118. DOI: 10.1016/S0016-7037(01)00841-9 .
doi: 10.1016/S0016-7037(01)00841-9 |
|
Legrand M , Preunkert S , Jourdain B , et al. , 2013. Water-soluble organic carbon in snow and ice deposited at Alpine, Greenland, and Antarctic sites: a critical review of available data and their atmospheric relevance. Climate of the Past Discussions, 9(3): 2357-2399. DOI: 10.5194/cp-9-2195-2013 .
doi: 10.5194/cp-9-2195-2013 |
|
Leitch DR , 2006. Mercury Distribution in Water and Permafrost of the Lower Mackenzie Basin, Their Contribution to the Mercury Contamination in the Beaufort Sea Marine Ecosystem, and Potential Effects of Climate Variation. M.S. Thesis, The University of Manitoba. | |
Li C , Zhang Q , Kang S , et al. , 2015. Distribution and enrichment of mercury in Tibetan lake waters and their relations with the natural environment. Environmental Science and Pollution Research, 22: 12490-12500. DOI: 10.1007/s11356-015-4498-3 .
doi: 10.1007/s11356-015-4498-3 |
|
Li C , Bosch C , Kang S , et al. , 2016. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nature Communications, 7: 1-7. DOI: 10.1038/ncomms12574 .
doi: 10.1038/ncomms12574 |
|
Lim AG , Jiskra M , Sonke JE , et al. , 2020. A revised pan-Arctic permafrost soil Hg pool based on Western Siberian peat Hg and carbon observations. Biogeosciences, 17(12): 3083-3097. DOI: 10.5194/bg-17-3083-2020 .
doi: 10.5194/bg-17-3083-2020 |
|
Lin H , Tong Y , Yin X , et al. , 2019. First measurement of atmospheric mercury species in Qomolangma Natural Nature Preserve, Tibetan Plateau, and evidence of transboundary pollutant invasion. Atmospheric Chemistry and Physics, 19(2): 1373-1391. DOI: 10.5194/acp-19-1373-2019 .
doi: 10.5194/acp-19-1373-2019 |
|
Liu C , Hua X , Liu H , et al. , 2018. Tracing aquatic bioavailable Hg in three different regions of China using fish Hg isotopes. Ecotoxicology & Environmental Safety, 150: 327-334. DOI: 10.1016/j.ecoenv.2017.12.053 .
doi: 10.1016/j.ecoenv.2017.12.053 |
|
Liu H , Shao J , Yu B , et al. , 2019. Mercury isotopic compositions of mosses, conifer needles, and surface soils: Implications for mercury distribution and sources in Shergyla Mountain, Tibetan Plateau. Ecotoxicology and Environmental Safety, 172: 225-231. DOI: 10.1016/j.ecoenv. 2019.01.082 .
doi: 10.1016/j.ecoenv. 2019.01.082 |
|
Loewen M , Kang S , Armstrong D , et al. , 2007. Atmospheric transport of mercury to the Tibetan Plateau. Environmental Science & Technology, 41: 7632-7638. DOI: 10.1021/es0710398 .
doi: 10.1021/es0710398 |
|
Ma J , Hung H , Tian C , et al. , 2011. Revolatilization of persistent organic pollutants in the Arctic induced by climate change. Nature Climate Change, 1(5): 255-260. DOI: 10. 1038/nclimate1167 .
doi: 10. 1038/nclimate1167 |
|
Ma M , Du H , Wang D , et al. , 2017. Biotically mediated mercury methylation in the soils and sediments of Nam Co Lake, Tibetan Plateau. Environmental Pollution, 227: 243-251. DOI: 10.1016/j.envpol.2017.04.037 .
doi: 10.1016/j.envpol.2017.04.037 |
|
Mu C , Schuster PF , Abbott BW , et al. , 2020. Permafrost degradation enhances the risk of mercury release on Qinghai-Tibetan Plateau. Science of the Total Environment, 708: 135127. DOI: 10.1016/j.scitotenv.2019.135127 .
doi: 10.1016/j.scitotenv.2019.135127 |
|
Obrist D , Agnan Y , Jiskra M , et al. , 2017. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature, 547: 201-204. DOI: 10.1038/nature22997 .
doi: 10.1038/nature22997 |
|
Obrist D , Kirk JL , Zhang L , et al. , 2018. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio, 47: 116-140. DOI: 10.1007/s13280-017-1004-9 .
doi: 10.1007/s13280-017-1004-9 |
|
Olson C , Jiskra M , Biester H , et al. , 2018. Mercury in active‐layer tundra soils of Alaska: concentrations, pools, origins, and spatial distribution. Global Biogeochemical Cycles, 32: 1058-1073. DOI: 10.1029/2017GB005840 .
doi: 10.1029/2017GB005840 |
|
Outridge PM , Mason R , Wang F , et al. , 2018. Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environmental Science & Technology, 52: 11466-11477. DOI: 10.1021/acs.est.8b01246 .
doi: 10.1021/acs.est.8b01246 |
|
Pacyna EG , Pacyna JM , Steenhuisen F , et al. , 2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40: 4048-4063. DOI: 10.1016/j.atmosenv.2006.03.041 .
doi: 10.1016/j.atmosenv.2006.03.041 |
|
Paudyal R , Kang S , Huang J , et al. , 2017. Insights into mercury deposition and spatiotemporal variation in the glacier and melt water from the central Tibetan Plateau. Science of the Total Environment, 599: 2046-2053. DOI: 10.1016/j.scitotenv.2017.05.145 .
doi: 10.1016/j.scitotenv.2017.05.145 |
|
Paudyal R , Kang S , Tripathee L , et al. , 2019. Concentration, spatiotemporal distribution, and sources of mercury in Mt. Yulong, a remote site in southeastern Tibetan Plateau. Environmental Science and Pollution Research, 26: 16457-16469. DOI: 10.1007/s11356-019-05005-4 .
doi: 10.1007/s11356-019-05005-4 |
|
Pirrone N , Cinnirella S , Feng X , et al. , 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry & Physics, 10: 5951-5964. DOI: 10.5194/acp-10-5951-2010 .
doi: 10.5194/acp-10-5951-2010 |
|
Poulain AJ , Lalonde JD , Amyot M , et al. , 2004. Redox transformations of mercury in an Arctic snowpack at springtime. Atmospheric Environment, 38: 6763-6774. DOI: 10. 1016/j.atmosenv.2004.09.013 .
doi: 10. 1016/j.atmosenv.2004.09.013 |
|
Poulain AJ , Roy V , Amyot M , 2007. Influence of temperate mixed and deciduous tree covers on Hg concentrations and photoredox transformations in snow. Geochimica et Cosmochimica Acta, 71: 2448-2462. DOI: 10.1016/j.gca. 2007.03.003 .
doi: 10.1016/j.gca. 2007.03.003 |
|
Qin D , 2017. An Introduction to Cryosphere Science. Beijing: Science Press. | |
Qiu J , 2008. China: the third pole. Nature, 454: 393-396. DOI: 10.1038/454393a .
doi: 10.1038/454393a |
|
Schaefer K , Elshorbany Y , Jafarov E , et al. , 2020. Potential impacts of mercury released from thawing permafrost. Nature communications, 11(1): 1-6. DOI: 10.1038/s41467-020-18398-5 .
doi: 10.1038/s41467-020-18398-5 |
|
Schroeder WH , Anlauf KG , Barrie LA , et al. , 1998. Arctic springtime depletion of mercury. Nature, 394: 331-332. DOI: 10.1038/28530 .
doi: 10.1038/28530 |
|
Schroeder W , Beauchamp S , Edwards G , et al. , 2005. Gaseous mercury emissions from natural sources in Canadian landscapes. Journal of Geophysical Research Atmospheres, 110(D18). DOI: 10.1029/2004JD005699 .
doi: 10.1029/2004JD005699 |
|
Schuster PF , Striegl RG , Aiken GR , et al. , 2011. Mercury export from the Yukon River Basin and potential response to a changing climate. Environmental Science & Technology, 45: 9262-9267. DOI: 10.1021/es202068b .
doi: 10.1021/es202068b |
|
Schuster PF , Schaefer KM , Aiken GR , et al. , 2018. Permafrost stores a globally significant amount of mercury. Geophysical Research Letters, 45: 1463-1471. DOI: 10.1002/2017GL075571 .
doi: 10.1002/2017GL075571 |
|
Selin NE , 2009. Global biogeochemical cycling of mercury: a review. Annual Review of Environment and Resources, 34: 43-63. DOI: /10.1146/annurev.environ.051308.084314 .
doi: /10.1146/annurev.environ.051308.084314 |
|
Sendergaard J , Riget F , Tamstorf MP , et al. , 2012. Mercury transport in a low-Arctic river in Kobbefjord, West Greenland (64°N). Water, Air, & Soil Pollution, 223: 4333-4342. DOI: 10.1007/s11270-012-1198-1 .
doi: 10.1007/s11270-012-1198-1 |
|
Shao J , Shi J , Bu D , et al. , 2016. Mercury in alpine fish from four rivers in the Tibetan Plateau. Journal of Environmental Sciences, 39: 22-28. DOI: 10.1016/j.jes.2015.09.009 .
doi: 10.1016/j.jes.2015.09.009 |
|
Sondergaard J , Tamstorf M , Elberling B , et al. , 2015. Mercury exports from a High-Arctic river basin in Northeast Greenland (74°N) largely controlled by glacial lake outburst floods. Science of the Total Environment, 514: 83-91. DOI: 10.1016/j.scitotenv.2015.01.097 .
doi: 10.1016/j.scitotenv.2015.01.097 |
|
Steffen A , Douglas T , Amyot M , et al. , 2008. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmospheric Chemistry and Physics, 8: 1445-1482. DOI: 10.5194/acp-8-1445-2008 .
doi: 10.5194/acp-8-1445-2008 |
|
Steffen A , Bottenheim J , Cole A , et al. , 2014. Atmospheric mercury speciation and mercury in snow over time at Alert, Canada. Atmospheric Chemistry and Physics, 14: 2219-2231. DOI: 10.5194/acp-14-2219-2014 .
doi: 10.5194/acp-14-2219-2014 |
|
Stern GA , Macdonald RW , Outridge PM , et al. , 2012. How does climate change influence arctic mercury? Science of the Total Environment, 414: 22-42. DOI: 10.1016/j.scitotenv.2011.10.039 .
doi: 10.1016/j.scitotenv.2011.10.039 |
|
Streets DG , Hao J , et al. , 2005. Anthropogenic mercury emissions in China. Atmospheric Environment, 39: 7789-7806. DOI: 10.1016/j.atmosenv.2005.08.029 .
doi: 10.1016/j.atmosenv.2005.08.029 |
|
Sun S , Kang S , Huang J , et al. , 2016. Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China. Journal of Environmental Sciences, 44: 213-223. DOI: 10.1016/j.jes.2015.09.017 .
doi: 10.1016/j.jes.2015.09.017 |
|
Sun S , Kang S , Huang J , et al. , 2017a. Distribution and variation of mercury in frozen soils of a high-altitude permafrost region on the northeastern margin of the Tibetan Plateau. Environmental Science and Pollution Research, 24: 15078-15088. DOI: 10.1007/s11356-017-9088-0 .
doi: 10.1007/s11356-017-9088-0 |
|
Sun X , Wang K , Kang S , et al. , 2017b. The role of melting alpine glaciers in mercury export and transport: An intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau. Environmental Pollution, 220: 936-945. DOI: 10.1016/j.envpol.2016.10.079 .
doi: 10.1016/j.envpol.2016.10.079 |
|
Sun S , Kang S , Guo J , et al. , 2018a. Insights into mercury in glacier snow and its incorporation into meltwater runoff based on observations in the southern Tibetan Plateau. Journal of Environmental Sciences, 68: 130-142. DOI: 10. 1016/j.jes.2018.03.033 .
doi: 10. 1016/j.jes.2018.03.033 |
|
Sun X , Zhang Q , Kang S , et al. , 2018b. Mercury speciation and distribution in a glacierized mountain environment and their relevance to environmental risks in the inland Tibetan Plateau. Science of the Total Environment, 631: 270-278. DOI: 10.1016/j.scitotenv.2018.03.012 .
doi: 10.1016/j.scitotenv.2018.03.012 |
|
Sun S , Ma M , He X , et al. , 2020. Vegetation mediated mercury flux and atmospheric mercury in the alpine permafrost region of the central Tibetan Plateau. Environmental Science & Technology, 54: 6043-6052. DOI: 10.1021/acs.est. 9b06636 .
doi: 10.1021/acs.est. 9b06636 |
|
Tripathee L , Guo J , Kang S , et al. , 2019. Spatial and temporal distribution of total mercury in atmospheric wet precipitation at four sites from the Nepal-Himalayas. Science of the Total Environment, 655: 1207-1217. DOI: 10.1016/j.scitotenv.2018.11.338 .
doi: 10.1016/j.scitotenv.2018.11.338 |
|
Tripathee L , Guo J , Kang S , et al. , 2020. Measurement of mercury, other trace elements and major ions in wet deposition at Jomsom: the semi-arid mountain valley of the Central Himalaya. Atmospheric Research, 234: 104691. DOI: 10. 1016/j.atmosres.2019.104691 .
doi: 10. 1016/j.atmosres.2019.104691 |
|
Ullrich SM , Tanton TW , Abdrashitova SA , 2001. Mercury in the aquatic environment: a review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31: 241-293. DOI: 10.1080/20016491089226 .
doi: 10.1080/20016491089226 |
|
Wang X , Dong Z , Zhang J , et al. , 2004. Modern dust storms in China: an overview. Journal of Arid Environments, 58: 559-574. DOI: 10.1016/j.jaridenv.2003.11.009 .
doi: 10.1016/j.jaridenv.2003.11.009 |
|
Wang X , Luo J , Yin R , et al. , 2017. Using mercury isotopes to understand mercury accumulation in the montane forest floor of the Eastern Tibetan Plateau. Environmental Science & Technology, 51(2): 801-809. DOI: 10.1021/acs.est.6b03806 .
doi: 10.1021/acs.est.6b03806 |
|
Wang X , Luo J , Yuan W , et al. , 2020. Global warming accelerates uptake of atmospheric mercury in regions experiencing glacier retreat. Proceedings of the National Academy of Sciences, 117(4): 2049-2055. DOI: 10.1073/pnas.1906930117 .
doi: 10.1073/pnas.1906930117 |
|
Wang Z , Wang Q , Zhao L , et al. , 2016. Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau. Journal of Mountain Science, 13: 1035-1046. DOI: 10.1007/s11629-015-3485-y .
doi: 10.1007/s11629-015-3485-y |
|
Xu X , Zhang Q , Wang W , 2016. Linking mercury, carbon, and nitrogen stable isotopes in Tibetan biota: Implications for using mercury stable isotopes as source tracers. Scientific Reports, 6(1): 1-10. DOI: 10.1038/srep25394 .
doi: 10.1038/srep25394 |
|
Yang M , Wang X , Pang G , et al. , 2019. The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes. Earth-Science Reviews, 190: 353-369. DOI: 10.1016/j.earscirev.2018.12.018 .
doi: 10.1016/j.earscirev.2018.12.018 |
|
Yang R , Jing C , Zhang Q , et al. , 2011. Polybrominated diphenyl ethers (PBDEs) and mercury in fish from lakes of the Tibetan Plateau. Chemosphere, 83: 862-867. DOI: 10. 1016/j.chemosphere.2011.02.060 .
doi: 10. 1016/j.chemosphere.2011.02.060 |
|
Yang R , Zhang S , Li A , et al. , 2013. Altitudinal and spatial signature of persistent organic pollutants in soil, lichen, conifer needles, and bark of the Southeast Tibetan Plateau: implications for sources and environmental cycling. Environmental Science & Technology, 47: 12736-12743. DOI: 10.1021/es403562x .
doi: 10.1021/es403562x |
|
Yao T , Thompson LG , Mosbrugger V , et al. , 2012. Third pole environment (TPE). Environmental Development, 3: 52-64. DOI: 10.1016/j.envdev.2012.04.002 .
doi: 10.1016/j.envdev.2012.04.002 |
|
Yin X , Kang S , Foy BD , et al. , 2018. Multi-year monitoring of atmospheric total gaseous mercury at a remote high-altitude site (Nam Co, 4,730 m a.s.l.) in the inland Tibetan Plateau region. Atmospheric Chemistry and Physics, 18: 10557-10574. DOI: 10.5194/acp-18-10557-2018 .
doi: 10.5194/acp-18-10557-2018 |
|
Zemp M , Huss M , Thibert E , et al. , 2019. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568: 382-386. DOI: 10.1038/s41586-019-1071-0 .
doi: 10.1038/s41586-019-1071-0 |
|
Zhang H , Fu X , Lin C , et al. , 2016. Monsoon-facilitated characteristics and transport of atmospheric mercury at a high-altitude background site in southwestern China. Atmospheric Chemistry and Physics, 16: 13131-13148. DOI: 10.5194/acp-16-13131-2016 .
doi: 10.5194/acp-16-13131-2016 |
|
Zhang H , Fu X , Lin C , et al. , 2015a. Observation and analysis of speciated atmospheric mercury in Shangri-La, Tibetan Plateau, China. Atmospheric Chemistry and Physics, 15: 653-665. DOI: 10.5194/acp-15-653-2015 .
doi: 10.5194/acp-15-653-2015 |
|
Zhang L , Wang S , Wang L , et al. , 2015b. Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environmental Science & Technology, 49: 3185-3194. DOI: 10.1021/es504840m .
doi: 10.1021/es504840m |
|
Zhang Q , Huang J , Wang F , et al. , 2012. Mercury distribution and deposition in glacier snow over western China. Environmental Science & Technology, 46: 5404-5413. DOI: 10.1021/es300166x .
doi: 10.1021/es300166x |
|
Zhang Q , Pan K , Kang S , et al. , 2014. Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau. Environmental Science & Technology, 48: 5220-5228. DOI: 10.1021/es404275v .
doi: 10.1021/es404275v |
|
Zhang Q , Kang S , Gabrielli P , et al. , 2015c. Vanishing high mountain glacial archives: challenges and perspectives. Environmental Science & Technology, 49: 9499-9500. DOI: 10.1021/acs.est.5b03066 .
doi: 10.1021/acs.est.5b03066 |
|
Zhang Q , Zhang F , Kang S , et al. , 2017. Melting glaciers: Hidden hazards. Science, 356: 495. DOI: 10.1126/science.aan4118 .
doi: 10.1126/science.aan4118 |
|
Zhang Q , Sun X , Sun S , et al. , 2019. Understanding mercury cycling in Tibetan glacierized mountain environment: recent progress and remaining gaps. Bulletin of Environmental Contamination and Toxicology, 102: 672-678. DOI: 10.1007/s00128-019-02541-0 .
doi: 10.1007/s00128-019-02541-0 |
|
Zheng W , Kang S , Feng X , et al. , 2010. Mercury speciation and spatial distribution in surface waters of the Yarlung Zangbo River, Tibet. Chinese Science Bulletin, 55: 2697-2703. DOI: 10.1007/s11434-010-4001-y. (in Chinese)
doi: 10.1007/s11434-010-4001-y. |
|
Zou D , Zhao L , Yu S , et al. , 2017. A new map of permafrost distribution on the Tibetan Plateau. The Cryosphere, 11(6): 2527. DOI: 10.5194/tc-11-2527-2017 .
doi: 10.5194/tc-11-2527-2017 |
|
Ahn MC , Yi SM , Holsen TM , et al. , 2011. Mercury wet deposition in rural Korea: concentrations and fluxes. Journal of Environmental Monitoring, 13(10): 2748-2754. DOI: 10. 1039/C1EM10014A .
doi: 10. 1039/C1EM10014A |
|
Fang F , Wang Q , Li J , 2004. Urban environmental mercury in Changchun, a metropolitan city in Northeastern China: source, cycle, and fate. Science of the Total Environment, 330(1-3): 159-170. DOI: 10.1016/j.scitotenv.2004.04.006 .
doi: 10.1016/j.scitotenv.2004.04.006 |
|
Fu X , Feng X , Zhu W , et al. , 2010a. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China. Environmental Pollution, 158: 2324-2333. DOI: 10.1016/j.envpol.2010.01.032 .
doi: 10.1016/j.envpol.2010.01.032 |
|
Fu X , Feng X , Dong Z , et al. , 2010b. Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China. Atmospheric Chemistry and Physics,10(5): 2425-2437. DOI: 10.5194/acp-10-2425-2010 .
doi: 10.5194/acp-10-2425-2010 |
|
Huang J , 2011. Study on Spatial and Temporal Variations of Speciated Mercury in Precipitation of the Tibetan Plateau and Its Adjacent Regions. Ph.D thesis, Graduate University of Chinese Academy of Sciences. (in Chinese) | |
Huang J , Kang S , Guo J , et al. , 2012a. Seasonal variations, speciation and possible sources of mercury in the snowpack of Zhadang glacier, Mt. Nyainqêntanglha, southern Tibetan Plateau. Science of the Total Environment, 429: 223-230. DOI: 10.1016/j.scitotenv.2012.04.045 .
doi: 10.1016/j.scitotenv.2012.04.045 |
|
Huang J , Kang S , Zhang Q , et al. , 2012b. Wet deposition of mercury at a remote site in the Tibetan Plateau: concentrations, speciation, and fluxes. Atmospheric Environment, 62: 540-550. DOI: 10.1016/j.atmosenv.2012.09.003 .
doi: 10.1016/j.atmosenv.2012.09.003 |
|
Huang J , Kang S , Wang S , et al. , 2013. Wet deposition of mercury at Lhasa, the capital city of Tibet. Science of the Total Environment, 447: 123-132. DOI: 10.1016/j.scitotenv. 2013.01.003 .
doi: 10.1016/j.scitotenv. 2013.01.003 |
|
Huang J , Kang S , Guo J , et al. , 2014. Mercury distribution and variation on a high-elevation mountain glacier on the northern boundary of the Tibetan Plateau. Atmospheric Environment, 96: 27-36. DOI: 10.1016/j.atmosenv.2014.07.023 .
doi: 10.1016/j.atmosenv.2014.07.023 |
|
Huang J , Kang S , Zhang Q , et al. , 2015. Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau. Environmental Pollution, 206: 518-526. DOI: 10.1016/j.envpol.2015.07.024 .
doi: 10.1016/j.envpol.2015.07.024 |
|
Keeler GJ , Landis MS , Norris GA , et al. , 2006. Sources of mercury wet deposition in eastern Ohio, USA. Environmental Science & Technology, 40(19): 5874-5881. DOI: 10.1021/es060377q .
doi: 10.1021/es060377q |
|
Lai S , Holsen TM , Hopke PK , et al. , 2007. Wet deposition of mercury at a New York state rural site: concentrations, fluxes, and source areas. Atmospheric Environment, 41(21): 4337-4348. DOI: 10.1016/j.atmosenv.2007.01.057 .
doi: 10.1016/j.atmosenv.2007.01.057 |
|
Liu JH , 1997. The Preliminary Study Onmercury Contamination in Beijing City. A Dissertation for Doctor'S Degree. Ph.D thesis, Graduate University of Chinese Academy of Sciences. (in Chinese) | |
Loewen M , Kang S , Armstrong D , et al. , 2007. Atmospheric transport of mercury to the Tibetan Plateau. Environmental Science & Technology, 41: 7632-7638. DOI: 10.1021/es0710398 .
doi: 10.1021/es0710398 |
|
Lombard M , Bryce J , Mao H , et al. , 2011. Mercury deposition in southern New Hampshire, 2006-2009. Atmospheric Chemistry and Physics, 11(15): 7657-7668. DOI: 10.5194/acp-11-7657-2011 .
doi: 10.5194/acp-11-7657-2011 |
|
Louis VLS , Rudd JW , Kelly CA , et al. , 1995. Wet deposition of methyl mercury in northwestern Ontario compared to other geographic locations. Water, Air, and Soil Pollution, 80(1-4): 405-414. DOI: 10.1007/BF01189690 .
doi: 10.1007/BF01189690 |
|
MDN , 2010. Annual Summary: National Atmospheric Deposition Program-Mercury Deposition Network. | |
Paudyal R , Kang S , Huang J , et al. , 2017. Insights into mercury deposition and spatiotemporal variation in the glacier and melt water from the central Tibetan Plateau. Science of the Total Environment, 599: 2046-2053. DOI: 10.1016/j.scitotenv.2017.05.145 .
doi: 10.1016/j.scitotenv.2017.05.145 |
|
Paudyal R , Kang S , Tripathee L , et al. , 2019. Concentration, spatiotemporal distribution, and sources of mercury in Mt. Yulong, a remote site in southeastern Tibetan Plateau. Environmental Science and Pollution Research, 26: 16457-16469. DOI: 10.1007/s11356-019-05005-4 .
doi: 10.1007/s11356-019-05005-4 |
|
Sanei H , Outridge P , Goodarzi F , et al. , 2010. Wet deposition mercury fluxes in the Canadian sub-Arctic and southern Alberta, measured using an automated precipitation collector adapted to cold regions. Atmospheric Environment, 44(13): 1672-1681. DOI: 10.1016/j.atmosenv.2010.01.030 .
doi: 10.1016/j.atmosenv.2010.01.030 |
|
Seo YS , Han YJ , Choi HD , et al. , 2012. Characteristics of total mercury (TM) wet deposition: scavenging of atmospheric mercury species. Atmospheric Environment, 49: 69-76. DOI: 10.1016/j.atmosenv.2011.12.031 .
doi: 10.1016/j.atmosenv.2011.12.031 |
|
Sheu GR , Lin NH , 2013. Characterizations of wet mercury deposition to a remote islet (Pengjiayu) in the subtropical Northwest Pacific Ocean. Atmospheric Environment, 77: 474-481. DOI: 10.1016/j.atmosenv.2013.05.038 .
doi: 10.1016/j.atmosenv.2013.05.038 |
|
Sun S , Kang S , Guo J , et al. , 2018. Insights into mercury in glacier snow and its incorporation into meltwater runoff based on observations in the southern Tibetan Plateau. Journal of Environmental Sciences, 68: 130-142. DOI: 10.1016/j.jes. 2018.03.033 .
doi: 10.1016/j.jes. 2018.03.033 |
|
Tripathee L , Guo J , Kang S , et al. , 2019. Spatial and temporal distribution of total mercury in atmospheric wet precipitation at four sites from the Nepal-Himalayas. Science of the Total Environment, 655: 1207-1217. DOI: 10.1016/j.scitotenv.2018.11.338 .
doi: 10.1016/j.scitotenv.2018.11.338 |
|
Wan Q , Feng X , Lu J , et al. , 2009. Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes. Environmental Research, 109: 721-727. DOI: 10.1016/j.envres.2009.05.006 .
doi: 10.1016/j.envres.2009.05.006 |
|
Wang Z , Zhang X , Xiao J , et al. , 2009. Mercury fluxes and pools in three subtropical forested catchments, southwest China. Environmental Pollution, 157(3): 801-808. DOI: 10. 1016/j.envpol.2008.11.018 .
doi: 10. 1016/j.envpol.2008.11.018 |
|
Zhang Q , Huang J , Wang F , et al. , 2012a. Mercury distribution and deposition in glacier snow over western China. Environmental Science & Technology, 46: 5404-5413. DOI: 10.1021/es300166x .
doi: 10.1021/es300166x |
|
Zhang X , Siddiqi Z , Song X , et al. , 2012b. Atmospheric dry and wet deposition of mercury in Toronto. Atmospheric Environment, 50: 60-65. DOI: 10.1016/j.atmosenv.2011. 12.062 .
doi: 10.1016/j.atmosenv.2011. 12.062 |
[1] | GuoNing Wan,MeiXue Yang,XueJia Wang. Ground temperature variation and its response to climate change on the northern Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2021, 13(4): 299-313. |
[2] | Poonam Thapa,JianZhong Xu,Bigyan Neupane. A concise overview on historical black carbon in ice cores and remote lake sediments in the northern hemisphere [J]. Sciences in Cold and Arid Regions, 2021, 13(3): 179-194. |
[3] | JinLei Chen,Jun Wen,ShiChang Kang,XianHong Meng,XianYu Yang. The evapotranspiration and environmental controls of typical underlying surfaces on the Qinghai-Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2021, 13(1): 53-61. |
[4] | YongJian Ding,JianPing Yang,ShengXia Wang,YaPing Chang. A review of the interaction between the cryosphere and atmosphere [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 329-342. |
[5] | ShiQiao Zhou. A note on the lake level variations of Nam Co, south-central Tibetan Plateau from 2005 to 2019 [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 430-435. |
[6] | KunXin Wang,YinSheng Zhang,Ning Ma,YanHong Guo,YaoHui Qiang. Cryosphere evapotranspiration in the Tibetan Plateau: A review [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 355-370. |
[7] | Xin Wang,Qiao Liu,ShiYin Liu,GuangLi He. Manifestations and mechanisms of mountain glacier-related hazards [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 436-446. |
[8] | PengFei Lin,ZhiBin He,Jun Du,LongFei Chen,Xi Zhu,QuanYan Tian. Processes of runoff in seasonally-frozen ground about a forested catchment of semiarid mountains [J]. Sciences in Cold and Arid Regions, 2020, 12(5): 272-283. |
[9] | TanGuang Gao,Jie Liu,TingJun Zhang,ShiChang Kang,ChuanKun Liu,ShuFa Wang,Mika Sillanpää,YuLan Zhang. Estimating interaction between surface water and groundwater in a permafrost region of the northern Tibetan Plateau using heat tracing method [J]. Sciences in Cold and Arid Regions, 2020, 12(2): 71-82. |
[10] | ZeYong Hu,ZhiPeng Xie. Origin and advances in implementing blowing-snow effects in the Community Land Model [J]. Sciences in Cold and Arid Regions, 2019, 11(5): 335-339. |
[11] | JianPing Yang. Studies on eco-environmental change in source regions of the Yangtze and Yellow Rivers of China:present and future [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 173-183. |
[12] | Rui Chen,MeiXue Yang,XueJia Wang,GuoNing Wan. Review on simulation of land-surface processes on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 93-115. |
[13] | RuiQing Li,YanHong Gao,DeLiang Chen,YongXin Zhang,SuoSuo Li. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 482-492. |
[14] | YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379-391. |
[15] | HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207-218. |
|