Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (1): 1-22.doi: 10.3724/SP.J.1226.2022.21049.

   

Research progress on behaviors and environmental effects of mercury in the cryosphere of the Tibetan Plateau: a critical review

ShiWei Sun1,4,ShiChang Kang1,3,4(),QiangGong Zhang2,3,JunMing Guo1,4,XueJun Sun2,4   

  1. 1.State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China
    3.CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
    4.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-12-03 Accepted:2021-08-09 Online:2022-02-28 Published:2022-03-03
  • Contact: ShiChang Kang E-mail:shichang.kang@lzb.ac.cn

Abstract:

The behavior and fates of environmental pollutants within the cryosphere and the associated environmental impacts are of increasing concerns in the context of global warming. The Tibetan Plateau (TP), also known as the "Third Pole", represents one of the most important cryospheric regions in the world. Mercury (Hg) is recognized as a global pollutant. Here, we summarize the current knowledge of Hg concentration levels, pools and spatio-temporal distribution in cryospheric environments (e.g., glacier, permafrost), and its transfer and potential cycle in the TP cryospheric region. Transboundary transport of anthropogenic Hg from the surrounding heavily-polluted regions, such as South and Southeast Asia, provides significant sources of atmospheric Hg depositions onto the TP cryosphere. We concluded that the melting of the cryosphere on the TP represents an increasing source of Hg and brings a risk to the TP environment. In addition, global warming acts as an important catalyst accelerating the release of legacy Hg from the melting cryosphere, adversely impacting ecosystems and biological health. Furthermore, we emphasize on the remaining gaps and proposed issues needed to be addressed in future work, including enhancing our knowledge on some key release pathways and the related environmental effects of Hg in the cryospheric region, integrated observation and consideration of Hg distribution, migration and cycle processes at a key region, and uses of Hg isotopic technical and Hg models to improve the understanding of Hg cycling in the TP cryospheric region.

Key words: mercury, cryosphere, environmental effects, Tibetan Plateau

Figure 1

Summary of atmospheric TGM concentrations at 8 stations on the Tibetan Plateau. The measurement periods are: Beiluhe (June, September, and December 2014 and May-June 2015); Tanggula (June-October, 2016); Nam Co (January 2012 to October 2014); Qomolangma (April-August, 2016); Waliguan (September 2007 to September 2008); Mt. Gongga (May 2005 to June 2006); Shangri-La (November 2009 to November 2010); Mt. Ailao (May 2011 to May 2012) (Fu et al., 2008, 2012; Zhang et al., 2015a, 2016; Ci et al., 2016; Yin et al., 2018; Lin et al., 2019; Sun et al., 2020)"

Figure 2

Summary of the concentrations and wet deposition fluxes of THg in precipitation over the Tibetan Plateau and its surrounding area (Fu et al., 2010; Huang, 2011; Huang et al., 2012c, 2013, 2015; Tripathee et al., 2019)"

Figure 3

Summary of THg concentrations in glacial snowpits on the Tibetan Plateau and its surrounding area (Loewen et al., 2007; Zhang et al., 2012; Huang et al., 2012a, 2014; Sun et al., 2018a; Paudyal et al., 2017, 2019). The values for LHG, GQ, XDKMD, ZD, ER and YL are the averages of several mean THg concentrations in snowpits taken at each individual site."

Table 1

Summary of Hg concentrations in ice and surface snow on the Tibetan Plateau (ELA: equilibrium line altitude)"

Glacier nameStudy regionSample typeDepth (cm)DateELA (m a.s.l.)

Altitude

(m a.s.l.)

THg (ng/L)PHgReference
mean±SDrange
LHG (the Laohugou No.12 Glacier)Northeastern TPFresh snow and aged Snow surface ice0-5July, 20134,8004,452-5,0385.1±8.8<1-39.7-Huang et al., 2014
4,400-4,90096.920.1-306.5-
MZ (Muztagata Glacier)Northwestern TPCoarse-grained snow0-5July, 20104,800-5,2005,400-5,8008.6±3.1<4-13-Huang et al., 2012b
GQ (Guoqu Glacier)Central TPCoarse-grained snow0-5April, 2009>5,3005,200-5,7003.6±1.12.5-7.5-Huang et al., 2012b
Ice core0-147 mNovember, 2005>5,3005,7500.8±0.8<0.5-9.8-Kang et al., 2016
XDKMD (the Xiao Dongkemadi Glacier)Central TPSurface snow0-5May-October, 20155,6205,400-5,70030.6±53.91.0-246.972.9%Paudyal et al., 2017
ZD (Zhadang Glacier)Southern TPCoarse-grained snow0-5May, 20095,7505,500-5,7500.9±0.3<1-1.5-Huang et al., 2012b
Fresh snow0-5August, September, 20115,7505,550-5,8000.7±0.20.4-1.4-Sun et al., 2018a
QY (Qiangyong Glacier)Southern TPSurface snow0-5August, 20125,6005,101-5,5978.8±0.57.6-10.671.9%Sun et al., 2016
ER (East Rongbuk Glacier)Southern edge of the TPCoarse-grained snow0-5October, 20106,4196,300-6,5502.2±0.61-3-Huang et al., 2012b
Intensive surface snow coarse-grained snow0-5April, 20166,4196,2803.9±1.22.6-6.470.7%±6.6%Sun et al., 2018a
Fine-grained snow0-5April, 20166,4196,300-6,70019.1±16.59.6-69.887.8%±6.0%
Surface ice0-5April, 20166,4196,250-6,40021.3±30.07.6-90.789.7%±6.0%
YL (The Baishui No.1 Glacier)Southeastern TPAged snow0-5May-August, 20154,9004,640-4,80037±263.1-137.855%Paudyal et al., 2019

Table 2

Summary of Hg concentrations in glacial meltwater and glacial-fed river water on the Tibetan Plateau"

Glacier nameStudy regionSample typeDate

Altitude

(m a.s.l.)

THg (ng/L)PHgExport flux (g/a)Reference
mean± SDrange
LHGNortheastern TPSupraglacial streamwaterJuly, 2013-1.10.9-1.2--Huang et al., 2014
Proglacial streamwater-22.820.3-25.3--
XDKMDCentral TPGlacial-fed riverwater (daily)July-August, 20155,058-5,26318.6±17.86.6-92.5--Paudyal et al., 2017
Glacial-fed riverwater (hourly)August, 20155,22018.9±6.77.7-37.3-747.43
ZDSouthern TPSupraglacial streamwaterAugust-September, 20115,5802.4±1.0-87.7%-Sun et al., 2017b
Proglacial riverwaterAugust-September, 20115,5451.1±0.8-79%8.76
Glacial-fed riverwater (hourly, UPMP)August, 20115,4000.8±0.4-86.2%7.3
Glacial-fed riverwater (hourly, DMP)August, 20114,7401.2±0.3-83.6%157.85
QYSouthern TPProglacial lakewaterAugust, 20124,7700.9±0.40.4-1.8--Sun et al., 2016
Glacial-fed riverwater4,869-4,8911.1-2.5---
ERSouthern edge of the TPSupraglacial lakewaterApril, 20166,2786.8±1.05.8-7.983%-Sun et al., 2018a
Supraglacial streamwaterApril, 20165,7504.6±0.44.2-5.079%-
Proglacial lakewaterApril, 20165,2142.2±0.21.9-2.458%-
Glacial-fed riverwaterApril, 20165,1511.9±0.41.5-2.341%-
YLSoutheastern TPSnow meltwater beneath the snowpitMay, 2015-21.2±7.810-36--Paudyal et al., 2019

Table S1

Summary of concentrations and wet deposition fluxes of THg in precipitation over the Tibetan Plateau and other typical regions"

SitesSite typePeriodAnnual precipitation (mm)Volume-weighted mean concentration (ng/L)

Mean THg

(ng/L)

PHg

Wet deposition

flux (μg/(m2·a))

Reference
THgMeHgTHgMeHg
Muztag Station, Northwestern TPRemoteJuly-October, 2010200--10.3±11.569.5%2.1-Huang, 2011
Laohugou Station, Northeastern TPRemoteJuly-October, 2010369--32.9±54.677.1%12.1-Huang, 2011
Nam Co Station, Southern TPRemote2009-2011364.94.8±5.90.036.1±6.971.2%1.750.01Huang et al., 2012b
SET Station, Southeastern TPRemote2010-20129784.00.113.4±1.643.6%3.90.11Huang et al., 2015
Two sites in central HimalayaRemote2011-2012---6.5-7.163%-80%--Tripathee et al., 2019
Mt.Gongga, Southeastern TPRural2005-20071,81814.30.16--26.10.30Fu et al., 2010a
Dhunche, central HimalayaRural2011-2012-6.7-8.0±8.360%15.9-Tripathee et al., 2019
Yulong Station, Southeastern TPUrbanAugust-October, 2010921--11.4±5.892.6%10.5-Huang, 2011
Lhasa, Capital of TibetUrban201035924.8-32.6±34.977%±12%8.2-Huang et al., 2013
Kathmandu, NepalUrban2011-2012-18.3-19.8±18.359%34.9-Tripathee et al., 2019
Mt. Changbai, northeastern ChinaAlpine2005-200663013.3---8.4-Wan et al., 2009
Mt. Leigong, southwestern ChinaAlpine2008-20091,5334.00.040--6.10.06Fu et al., 2010b
Pengjiayu, Taiwan, ChinaRemote20091,4388.85---10.18-Sheu and Lin, 2013
Three sites in southwestern ChinaRural to Suburban2005-20061,120-1,23012.9-32.3---16.8-29.0-Wang et al., 2009
Beijing, ChinaUrban1994-1995647224---115-Liu, 1997
Changchun, ChinaUrban1999-2000567354---152.4-Fang et al., 2004
Kodiak, USASub-Arctic20082,5002.1---5.2-MDN, 2010
Experimental Lakes Area, CanadaBoreal1992-19947304.00.052--2.90.04Louis et al., 1995
Churchill, CanadaSub-Arctic20073326.2---0.54-Sanei et al., 2010
North America MDN (>100 sites)Remote to industrial2008-2.1-18.7---1.9-25.0-MDN, 2010
KoreaRural2006-20081,0628.8---9.4-Ahn et al., 2011
Durham, USARural2007, 2008114-1608-8.1---8.4-12.3-Lombard et al., 2011
New York, USARural2003-20051105.5---5.9-Lai et al., 2007
Eastern Ohio, USAUrban2003, 2004-13.5-14---13.5-19.7-Keeler et al., 2006
Toronto, CanadaUrban2005-2008-22.0---18.60-Zhang et al., 2012b
Seoul, KoreaUrban2006, 20071,235-1,64510.1-16.3---16.8-20.2-Seo et al., 2012

Table S2

Summary of Hg concentrations in glacial snowpits on the Tibetan Plateau"

SiteStudy regionMountain rangeSample typeDepth (cm)Date

Altitude

(m a.s.l.)

THg (ng/L)PHgReference
mean±SDrange
the Laohugou No.12 GlacierNortheastern TPQiliansnowpit0-130October, 20085,02610.8±44.9-19.9-Zhang et al., 2012a
2 snowpits0-40July, 20135,0408.8, 10.6<1-50-Huang et al., 2014
Muztag GlacierNorthwestern TPKunlunsnowpit0-150July, 20105,7253.2±0.91.2-4.3-Zhang et al., 2012a
Guoqu GlacierCentral TPTanggula2 snowpits0-90October, November, 20055,750; 5,8203.7±2.41.2-8.3-Loewen et al., 2007
snowpit0-70April, 20095,7650.9±0.8<0.3-2-Zhang et al., 2012a
Xiao Dongkemadi GlacierCentral TPTanggula2 snowpits0-45June, July, 20155,6781.9, 4.30.47-10.0564.3%, 81.0%Paudyal et al., 2017
Zhadang GlacierSouthern TPNyainqêntanglhasnowpit0-110, 0-40June, October, 20065,8007.0±8.8,7.1±6.92.3-43.2-Loewen et al., 2007
snowpit0-200September, 20085,7588.1±9.20.8-38.2-Zhang et al., 2012a
snowpit0-210May, 20095,7975.5±6.20.3-22.2-Zhang et al., 2012a
9 snowpits0-45August, September, 20115,8002-6.9<1-20.876.6%Huang et al., 2012a
Demula GlacierSouthern TP

Kangri Garpo in

Eastern Himalaya

snowpit0-180September, 20085,4044.9±3.50.4-11-Zhang et al., 2012a
East Rongbuk GlacierSouthern edge of the TPMiddle Himalayassnowpit0-150April, 20056,5361.7±0.80.5-3-Loewen et al., 2007
snowpit0-115May, 20096,5251.1±1.30.3-6.5-Zhang et al., 2012a
snowpit0-140April, 20166,4602.8±5.01.5-21.178.3%±10.3%Sun et al., 2018
Baishui No.1 GlacierSoutheastern TPHengduansnowpit0-295May, 20094,7473.5±2.21-7.5-Zhang et al., 2012a
3 snowpits90, 110, 160May, 20154,7001.25-1.650.01-3.855%Paudyal et al., 2019
Agnan Y , Le Dantec T , Moore CW , et al. , 2016. New constraints on terrestrial surface-atmosphere fluxes of gaseous elemental mercury using a global database. Environmental Science & Technology, 50: 507-524. DOI: 10.1021/acs.est.5b04013 .
doi: 10.1021/acs.est.5b04013
Back RC , Watras CJ , 1995. Mercury in zooplankton of northern Wisconsin lakes-Taxonomic and site-specific trends. Water Air and Soil Pollution, 80 (1-4): 931-938. DOI: 10.1007/BF01189747 .
doi: 10.1007/BF01189747
Blais JM , Schindler DW , Muir DC , et al. , 2001. Melting glaciers: a major source of persistent organochlorines to subalpine Bow Lake in Banff National Park, Canada. Ambio, 30(7): 410-415. DOI: 10.1579/0044-7447-30.7.410 .
doi: 10.1579/0044-7447-30.7.410
Bogdal C , Schmid P , Zennegg M , et al. , 2009. Blast from the past: melting glaciers as a relevant source for persistent organic pollutants. Environmental Science & Technology, 43: 8173-8177. DOI: 10.1021/es901628x .
doi: 10.1021/es901628x
Bogdal C , Nikolic D , Lüthi MP , et al. , 2010. Release of legacy pollutants from melting glaciers: model evidence and conceptual understanding. Environmental Science & Technology, 44: 4063-4069. DOI: 10.1021/es903007h .
doi: 10.1021/es903007h
Bond AL , Hobson KA , Branfireun BA , 2015. Rapidly increasing methyl mercury in endangered ivory gull (Pagophila eburnea) feathers over a 130 year record. Proceedings Biological Sciences, 282: 20150032. DOI: 10.1098/rspb.2015. 0032 .
doi: 10.1098/rspb.2015. 0032
Ci Z , Peng F , Xue X , et al. , 2016. Air-surface exchange of gaseous mercury over permafrost soil: an investigation at a high-altitude (4,700 m asl) and remote site in the central Qinghai-Tibet Plateau. Atmospheric Chemistry and Physics, 16: 14741-14754. DOI: 10.5194/acp-16-14741-2016 .
doi: 10.5194/acp-16-14741-2016
Ci Z , Peng F , Xue X , et al. , 2018. Temperature sensitivity of gaseous elemental mercury in the active layer of the Qinghai-Tibet Plateau permafrost. Environmental Pollution, 238: 508-515. DOI: 10.1016/j.envpol.2018.02.085 .
doi: 10.1016/j.envpol.2018.02.085
Ci Z , Peng F , Xue X , et al. , 2020. Permafrost thaw dominates mercury emission in Tibetan thermokarst ponds. Environmental Science & Technology, 54: 5456-5466. DOI: 10. 1021/acs.est.9b06712 .
doi: 10. 1021/acs.est.9b06712
Dalziel J , 1995. Reactive mercury in the eastern North Atlantic and southeast Atlantic. Marine Chemistry, 49: 307-314. DOI: 10.1016/0304-4203(95)00020-R .
doi: 10.1016/0304-4203(95)00020-R
Dommergue A , Ferrari CP , Gauchar PA , et al. , 2003. The fate of mercury species in a sub‐arctic snowpack during snowmelt. Geophysical Research Letters, 30(12): 1621-1625. DOI: 10.1029/2003GL017308 .
doi: 10.1029/2003GL017308
Dommergue A , Larose C , Faïn X , et al. , 2010. Deposition of mercury species in the Ny-Ålesund area (79°N) and their transfer during snowmelt. Environmental Science & Technology, 44: 901-907. DOI: 10.1021/es902579m .
doi: 10.1021/es902579m
Durnford D , Dastoor A , 2011. The behavior of mercury in the cryosphere: A review of what we know from observations. Journal of Geophysical Research Atmospheres, 116(D6). DOI: 10.1029/2010JD014809 .
doi: 10.1029/2010JD014809
Ericksen J , Gustin M , Xin M , et al. , 2006. Air-soil exchange of mercury from background soils in the United States. Science of the Total Environment, 366: 851-863. DOI: 10. 1016/j.scitotenv.2005.08.019 .
doi: 10. 1016/j.scitotenv.2005.08.019
Ferrari CP , Dommergue A , Veysseyre A , et al. , 2002. Mercury speciation in the French seasonal snow cover. Science of the Total Environment, 287: 61-69. DOI: 10.1016/S0048-9697(01)00999-8 .
doi: 10.1016/S0048-9697(01)00999-8
Ferrari CP , Gauchard PA , Aspmo K , et al. , 2005. Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-Ålesund, Svalbard. Atmospheric Environment, 39: 7633-7645. DOI: 10.1016/j.atmosenv.2005.06.058 .
doi: 10.1016/j.atmosenv.2005.06.058
Fu X , Feng X , Zhu W , et al. , 2008. Total gaseous mercury concentrations in ambient air in the eastern slope of Mt. Gongga, South-Eastern fringe of the Tibetan plateau, China. Atmospheric Environment, 42: 970-979. DOI: 10.1016/j.atmosenv.2007.10.018 .
doi: 10.1016/j.atmosenv.2007.10.018
Fu X , Feng X , Zhu W , et al. , 2010. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China. Environmental Pollution, 158: 2324-2333. DOI: 10.1016/j.envpol.2010.01.032 .
doi: 10.1016/j.envpol.2010.01.032
Fu X , Feng X , Liang P , et al. , 2012. Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China. Atmospheric Chemistry and Physics, 12(4): 1951-1964. DOI: 10.5194/acp-12-1951-2012 .
doi: 10.5194/acp-12-1951-2012
Fu X , Zhang H , Wang X , et al. , 2015. Observations of atmospheric mercury in China: a critical review. Atmospheric Chemistry and Physics, 15(16): 9455-9476. DOI: 10.5194/acp-15-9455-2015 .
doi: 10.5194/acp-15-9455-2015
Gamberg M , Chételat J , Poulain AJ , et al. , 2015. Mercury in the Canadian Arctic terrestrial environment: An update. Science of the Total Environment, 509: 28-40. DOI: 10.1016/j.scitotenv.2014.04.070 .
doi: 10.1016/j.scitotenv.2014.04.070
Gu J , Pang Q , Ding J , et al. , 2020. The driving factors of mercury storage in the Tibetan grassland soils underlain by permafrost. Environmental Pollution, 265: 115079. DOI: 10. 1016/j.envpol.2020.115079 .
doi: 10. 1016/j.envpol.2020.115079
Guo J , Kang S , Huang J , et al. , 2017. Characterizations of atmospheric particulate-bound mercury in the Kathmandu Valley of Nepal, South Asia. Science of the Total Environment, 579: 1240-1248. DOI: 10.1016/j.scitotenv.2016. 11.110 .
doi: 10.1016/j.scitotenv.2016. 11.110
Guo J , Ram K , Tripathee L , et al. , 2020. Study on Mercury in PM10 at an Urban Site in the Central Indo-Gangetic Plain: seasonal variability and influencing factors. Aerosol and Air Quality Research, 20. DOI: 10.4209/AAQR.2019.12. 0630 .
doi: 10.4209/AAQR.2019.12. 0630
Gustin MS , Amos HM , Huang J , et al. , 2015. Measuring and modeling mercury in the atmosphere: a critical review. Atmospheric Chemistry and Physics, 15(10): 5697-5713. DOI: 10.5194/acp-15-5697-2015 .
doi: 10.5194/acp-15-5697-2015
Hammerschmidt CR , Lamborg CH , Fitzgerald WF , 2007. Aqueous phase methylation as a potential source of methylmercury in wet deposition. Atmospheric Environment, 41(8): 1663-1668. DOI: 10.1016/j.atmosenv.2006.10.032 .
doi: 10.1016/j.atmosenv.2006.10.032
Hock R , Rasul G , Adler C , et al. , 2019. High Mountain Areas: In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.
Hood E , Battin TJ , Fellman J , et al. , 2015. Storage and release of organic carbon from glaciers and ice sheets. Nature Geoscience, 8: 91-96. DOI: 10.1038/ngeo2331 .
doi: 10.1038/ngeo2331
Huang J , 2011. Study on Spatial and Temporal Variations of Speciated Mercury in Precipitation of the Tibetan Plateau and Its Adjacent Regions. Ph.D Thesis, Graduate University of Chinese Academy of Sciences. (in Chinese)
Huang J , Kang S , Guo J , et al. , 2012a. Seasonal variations, speciation and possible sources of mercury in the snowpack of Zhadang glacier, Mt. Nyainqêntanglha, southern Tibetan Plateau. Science of the Total Environment, 429: 223-230. DOI: 10.1016/j.scitotenv.2012.04.045 .
doi: 10.1016/j.scitotenv.2012.04.045
Huang J , Kang S , Zhang Q , et al. , 2012b. Spatial distribution and magnification processes of mercury in snow from high-elevation glaciers in the Tibetan Plateau. Atmospheric Environment, 46: 140-146. DOI: 10.1016/j.atmosenv.2011. 10.008 .
doi: 10.1016/j.atmosenv.2011. 10.008
Huang J , Kang S , Zhang Q , et al. , 2012c. Wet deposition of mercury at a remote site in the Tibetan Plateau: concentrations, speciation, and fluxes. Atmospheric Environment, 62: 540-550. DOI: 10.1016/j.atmosenv.2012.09.003 .
doi: 10.1016/j.atmosenv.2012.09.003
Huang J , Kang S , Wang S , et al. , 2013. Wet deposition of mercury at Lhasa, the capital city of Tibet. Science of the Total Environment, 447: 123-132. DOI: 10.1016/j.scitotenv. 2013.01.003 .
doi: 10.1016/j.scitotenv. 2013.01.003
Huang J , Kang S , Guo J , et al. , 2014. Mercury distribution and variation on a high-elevation mountain glacier on the northern boundary of the Tibetan Plateau. Atmospheric Environment, 96: 27-36. DOI: 10.1016/j.atmosenv.2014.07.023 .
doi: 10.1016/j.atmosenv.2014.07.023
Huang J , Kang S , Zhang Q , et al. , 2015. Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau. Environmental Pollution, 206: 518-526. DOI: 10.1016/j.envpol.2015.07.024 .
doi: 10.1016/j.envpol.2015.07.024
Huang J , Kang S , Guo J , et al. , 2016a. Atmospheric particulate mercury in Lhasa city, Tibetan Plateau. Atmospheric Environment, 142: 433-441. DOI: 10.1016/j.atmosenv.2016. 08.021 .
doi: 10.1016/j.atmosenv.2016. 08.021
Huang J , Kang S , Tian L , et al. , 2016b. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet. Science of the Total Environment, 566: 1215-1222. DOI: 10.1016/j.scitotenv. 2016.05.177 .
doi: 10.1016/j.scitotenv. 2016.05.177
Huang J , Kang S , Yin R , et al. , 2020a. Desert dust as a significant carrier of atmospheric mercury. Environmental Pollution, 267: 115442. DOI: 10.1016/j.envpol.2020.115442 .
doi: 10.1016/j.envpol.2020.115442
Huang J , Kang S , Yin R , et al. , 2020b. Mercury isotopes in frozen soils reveal transboundary atmospheric mercury deposition over the Himalayas and Tibetan Plateau. Environmental Pollution, 256: 113432. DOI: 10.1016/j.envpol.2019. 113432 .
doi: 10.1016/j.envpol.2019. 113432
Immerzeel WW , Van Beek LP , Bierkens MF , 2010. Climate change will affect the Asian water towers. Science, 328: 1382-1385. DOI: 10.1126/science.1183188 .
doi: 10.1126/science.1183188
Jiskra M , Sonke JE , Obrist D , et al. , 2018. A vegetation control on seasonal variations in global atmospheric mercury concentrations. Nature Geoscience, 11: 244-250. DOI: 10. 1038/s41561-018-0078-8 .
doi: 10. 1038/s41561-018-0078-8
Kang S , Xu Y , You Q , et al. , 2010. Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 5: 015101. DOI: 10.1088/1748-9326/5/1/015101 .
doi: 10.1088/1748-9326/5/1/015101
Kang S , Huang J , Wang F , et al. , 2016. Atmospheric mercury depositional chronology reconstructed from lake sediments and ice core in the Himalayas and Tibetan Plateau. Environmental Science & Technology, 50: 2859-2869. DOI: 10.1021/acs.est.5b04172 .
doi: 10.1021/acs.est.5b04172
Kang S , Zhang Q , Qian Y , et al. , 2019. Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. National Science Review, 6: 796-809. DOI: 10.1093/nsr/nwz031 .
doi: 10.1093/nsr/nwz031
Kang S , Guo W , Wu T , et al. , 2020a. Cryospheric Changes and their impacts on water resources in the Belt and Road regions. Advances in Earth Science, 35(1): 1-17. DOI: 10.11867/j.issn.1001-8166.2020.002. (in Chinese)
doi: 10.11867/j.issn.1001-8166.2020.002.
Kang S , Guo W , Zhon X , et al. , 2020b. Changes in the mountain cryosphere and their impacts and adaptation measures. Climate Change Research, 16: 143-152. DOI: 10.12006/j.issn.1673-1719.2019.257. (in Chinese)
doi: 10.12006/j.issn.1673-1719.2019.257.
Khan TR , Obrist D , Agnan Y , et al. , 2019. Atmosphere-terrestrial exchange of gaseous elemental mercury: parameterization improvement through direct comparison with measured ecosystem fluxes. Environmental Science: Processes & Impacts, 21(10): 1699-1712. DOI: 10.1039/C9EM00341J .
doi: 10.1039/C9EM00341J
Klaminder J , Yoo K , Rydberg J , et al. , 2008. An explorative study of mercury export from a thawing palsa mire. Journal of Geophysical Research Biogeosciences, 113: G04034. DOI: 10.1029/2008JG000776 .
doi: 10.1029/2008JG000776
Lalonde JD , Poulain AJ , Amyot M , 2002. The role of mercury redox reactions in snow on snow-to-air mercury transfer. Environmental Science & Technology, 36: 174-178. DOI: 10.1021/es010786g .
doi: 10.1021/es010786g
Lalonde JD , Amyot M , Doyon MR , et al. , 2003. Photo‐induced Hg(II) reduction in snow from the remote and temperate Experimental Lakes Area (Ontario, Canada). Journal of Geophysical Research Atmospheres, 108(D6): 4200. DOI: 10.1029/2001JD001534 .
doi: 10.1029/2001JD001534
Lamborg CH , Fitzgerald WF , O'Donnell J , et al. , 2002. A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochimica et Cosmochimica Acta, 66: 1105-1118. DOI: 10.1016/S0016-7037(01)00841-9 .
doi: 10.1016/S0016-7037(01)00841-9
Legrand M , Preunkert S , Jourdain B , et al. , 2013. Water-soluble organic carbon in snow and ice deposited at Alpine, Greenland, and Antarctic sites: a critical review of available data and their atmospheric relevance. Climate of the Past Discussions, 9(3): 2357-2399. DOI: 10.5194/cp-9-2195-2013 .
doi: 10.5194/cp-9-2195-2013
Leitch DR , 2006. Mercury Distribution in Water and Permafrost of the Lower Mackenzie Basin, Their Contribution to the Mercury Contamination in the Beaufort Sea Marine Ecosystem, and Potential Effects of Climate Variation. M.S. Thesis, The University of Manitoba.
Li C , Zhang Q , Kang S , et al. , 2015. Distribution and enrichment of mercury in Tibetan lake waters and their relations with the natural environment. Environmental Science and Pollution Research, 22: 12490-12500. DOI: 10.1007/s11356-015-4498-3 .
doi: 10.1007/s11356-015-4498-3
Li C , Bosch C , Kang S , et al. , 2016. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nature Communications, 7: 1-7. DOI: 10.1038/ncomms12574 .
doi: 10.1038/ncomms12574
Lim AG , Jiskra M , Sonke JE , et al. , 2020. A revised pan-Arctic permafrost soil Hg pool based on Western Siberian peat Hg and carbon observations. Biogeosciences, 17(12): 3083-3097. DOI: 10.5194/bg-17-3083-2020 .
doi: 10.5194/bg-17-3083-2020
Lin H , Tong Y , Yin X , et al. , 2019. First measurement of atmospheric mercury species in Qomolangma Natural Nature Preserve, Tibetan Plateau, and evidence of transboundary pollutant invasion. Atmospheric Chemistry and Physics, 19(2): 1373-1391. DOI: 10.5194/acp-19-1373-2019 .
doi: 10.5194/acp-19-1373-2019
Liu C , Hua X , Liu H , et al. , 2018. Tracing aquatic bioavailable Hg in three different regions of China using fish Hg isotopes. Ecotoxicology & Environmental Safety, 150: 327-334. DOI: 10.1016/j.ecoenv.2017.12.053 .
doi: 10.1016/j.ecoenv.2017.12.053
Liu H , Shao J , Yu B , et al. , 2019. Mercury isotopic compositions of mosses, conifer needles, and surface soils: Implications for mercury distribution and sources in Shergyla Mountain, Tibetan Plateau. Ecotoxicology and Environmental Safety, 172: 225-231. DOI: 10.1016/j.ecoenv. 2019.01.082 .
doi: 10.1016/j.ecoenv. 2019.01.082
Loewen M , Kang S , Armstrong D , et al. , 2007. Atmospheric transport of mercury to the Tibetan Plateau. Environmental Science & Technology, 41: 7632-7638. DOI: 10.1021/es0710398 .
doi: 10.1021/es0710398
Ma J , Hung H , Tian C , et al. , 2011. Revolatilization of persistent organic pollutants in the Arctic induced by climate change. Nature Climate Change, 1(5): 255-260. DOI: 10. 1038/nclimate1167 .
doi: 10. 1038/nclimate1167
Ma M , Du H , Wang D , et al. , 2017. Biotically mediated mercury methylation in the soils and sediments of Nam Co Lake, Tibetan Plateau. Environmental Pollution, 227: 243-251. DOI: 10.1016/j.envpol.2017.04.037 .
doi: 10.1016/j.envpol.2017.04.037
Mu C , Schuster PF , Abbott BW , et al. , 2020. Permafrost degradation enhances the risk of mercury release on Qinghai-Tibetan Plateau. Science of the Total Environment, 708: 135127. DOI: 10.1016/j.scitotenv.2019.135127 .
doi: 10.1016/j.scitotenv.2019.135127
Obrist D , Agnan Y , Jiskra M , et al. , 2017. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature, 547: 201-204. DOI: 10.1038/nature22997 .
doi: 10.1038/nature22997
Obrist D , Kirk JL , Zhang L , et al. , 2018. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio, 47: 116-140. DOI: 10.1007/s13280-017-1004-9 .
doi: 10.1007/s13280-017-1004-9
Olson C , Jiskra M , Biester H , et al. , 2018. Mercury in active‐layer tundra soils of Alaska: concentrations, pools, origins, and spatial distribution. Global Biogeochemical Cycles, 32: 1058-1073. DOI: 10.1029/2017GB005840 .
doi: 10.1029/2017GB005840
Outridge PM , Mason R , Wang F , et al. , 2018. Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environmental Science & Technology, 52: 11466-11477. DOI: 10.1021/acs.est.8b01246 .
doi: 10.1021/acs.est.8b01246
Pacyna EG , Pacyna JM , Steenhuisen F , et al. , 2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40: 4048-4063. DOI: 10.1016/j.atmosenv.2006.03.041 .
doi: 10.1016/j.atmosenv.2006.03.041
Paudyal R , Kang S , Huang J , et al. , 2017. Insights into mercury deposition and spatiotemporal variation in the glacier and melt water from the central Tibetan Plateau. Science of the Total Environment, 599: 2046-2053. DOI: 10.1016/j.scitotenv.2017.05.145 .
doi: 10.1016/j.scitotenv.2017.05.145
Paudyal R , Kang S , Tripathee L , et al. , 2019. Concentration, spatiotemporal distribution, and sources of mercury in Mt. Yulong, a remote site in southeastern Tibetan Plateau. Environmental Science and Pollution Research, 26: 16457-16469. DOI: 10.1007/s11356-019-05005-4 .
doi: 10.1007/s11356-019-05005-4
Pirrone N , Cinnirella S , Feng X , et al. , 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry & Physics, 10: 5951-5964. DOI: 10.5194/acp-10-5951-2010 .
doi: 10.5194/acp-10-5951-2010
Poulain AJ , Lalonde JD , Amyot M , et al. , 2004. Redox transformations of mercury in an Arctic snowpack at springtime. Atmospheric Environment, 38: 6763-6774. DOI: 10. 1016/j.atmosenv.2004.09.013 .
doi: 10. 1016/j.atmosenv.2004.09.013
Poulain AJ , Roy V , Amyot M , 2007. Influence of temperate mixed and deciduous tree covers on Hg concentrations and photoredox transformations in snow. Geochimica et Cosmochimica Acta, 71: 2448-2462. DOI: 10.1016/j.gca. 2007.03.003 .
doi: 10.1016/j.gca. 2007.03.003
Qin D , 2017. An Introduction to Cryosphere Science. Beijing: Science Press.
Qiu J , 2008. China: the third pole. Nature, 454: 393-396. DOI: 10.1038/454393a .
doi: 10.1038/454393a
Schaefer K , Elshorbany Y , Jafarov E , et al. , 2020. Potential impacts of mercury released from thawing permafrost. Nature communications, 11(1): 1-6. DOI: 10.1038/s41467-020-18398-5 .
doi: 10.1038/s41467-020-18398-5
Schroeder WH , Anlauf KG , Barrie LA , et al. , 1998. Arctic springtime depletion of mercury. Nature, 394: 331-332. DOI: 10.1038/28530 .
doi: 10.1038/28530
Schroeder W , Beauchamp S , Edwards G , et al. , 2005. Gaseous mercury emissions from natural sources in Canadian landscapes. Journal of Geophysical Research Atmospheres, 110(D18). DOI: 10.1029/2004JD005699 .
doi: 10.1029/2004JD005699
Schuster PF , Striegl RG , Aiken GR , et al. , 2011. Mercury export from the Yukon River Basin and potential response to a changing climate. Environmental Science & Technology, 45: 9262-9267. DOI: 10.1021/es202068b .
doi: 10.1021/es202068b
Schuster PF , Schaefer KM , Aiken GR , et al. , 2018. Permafrost stores a globally significant amount of mercury. Geophysical Research Letters, 45: 1463-1471. DOI: 10.1002/2017GL075571 .
doi: 10.1002/2017GL075571
Selin NE , 2009. Global biogeochemical cycling of mercury: a review. Annual Review of Environment and Resources, 34: 43-63. DOI: /10.1146/annurev.environ.051308.084314 .
doi: /10.1146/annurev.environ.051308.084314
Sendergaard J , Riget F , Tamstorf MP , et al. , 2012. Mercury transport in a low-Arctic river in Kobbefjord, West Greenland (64°N). Water, Air, & Soil Pollution, 223: 4333-4342. DOI: 10.1007/s11270-012-1198-1 .
doi: 10.1007/s11270-012-1198-1
Shao J , Shi J , Bu D , et al. , 2016. Mercury in alpine fish from four rivers in the Tibetan Plateau. Journal of Environmental Sciences, 39: 22-28. DOI: 10.1016/j.jes.2015.09.009 .
doi: 10.1016/j.jes.2015.09.009
Sondergaard J , Tamstorf M , Elberling B , et al. , 2015. Mercury exports from a High-Arctic river basin in Northeast Greenland (74°N) largely controlled by glacial lake outburst floods. Science of the Total Environment, 514: 83-91. DOI: 10.1016/j.scitotenv.2015.01.097 .
doi: 10.1016/j.scitotenv.2015.01.097
Steffen A , Douglas T , Amyot M , et al. , 2008. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmospheric Chemistry and Physics, 8: 1445-1482. DOI: 10.5194/acp-8-1445-2008 .
doi: 10.5194/acp-8-1445-2008
Steffen A , Bottenheim J , Cole A , et al. , 2014. Atmospheric mercury speciation and mercury in snow over time at Alert, Canada. Atmospheric Chemistry and Physics, 14: 2219-2231. DOI: 10.5194/acp-14-2219-2014 .
doi: 10.5194/acp-14-2219-2014
Stern GA , Macdonald RW , Outridge PM , et al. , 2012. How does climate change influence arctic mercury? Science of the Total Environment, 414: 22-42. DOI: 10.1016/j.scitotenv.2011.10.039 .
doi: 10.1016/j.scitotenv.2011.10.039
Streets DG , Hao J , et al. , 2005. Anthropogenic mercury emissions in China. Atmospheric Environment, 39: 7789-7806. DOI: 10.1016/j.atmosenv.2005.08.029 .
doi: 10.1016/j.atmosenv.2005.08.029
Sun S , Kang S , Huang J , et al. , 2016. Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China. Journal of Environmental Sciences, 44: 213-223. DOI: 10.1016/j.jes.2015.09.017 .
doi: 10.1016/j.jes.2015.09.017
Sun S , Kang S , Huang J , et al. , 2017a. Distribution and variation of mercury in frozen soils of a high-altitude permafrost region on the northeastern margin of the Tibetan Plateau. Environmental Science and Pollution Research, 24: 15078-15088. DOI: 10.1007/s11356-017-9088-0 .
doi: 10.1007/s11356-017-9088-0
Sun X , Wang K , Kang S , et al. , 2017b. The role of melting alpine glaciers in mercury export and transport: An intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau. Environmental Pollution, 220: 936-945. DOI: 10.1016/j.envpol.2016.10.079 .
doi: 10.1016/j.envpol.2016.10.079
Sun S , Kang S , Guo J , et al. , 2018a. Insights into mercury in glacier snow and its incorporation into meltwater runoff based on observations in the southern Tibetan Plateau. Journal of Environmental Sciences, 68: 130-142. DOI: 10. 1016/j.jes.2018.03.033 .
doi: 10. 1016/j.jes.2018.03.033
Sun X , Zhang Q , Kang S , et al. , 2018b. Mercury speciation and distribution in a glacierized mountain environment and their relevance to environmental risks in the inland Tibetan Plateau. Science of the Total Environment, 631: 270-278. DOI: 10.1016/j.scitotenv.2018.03.012 .
doi: 10.1016/j.scitotenv.2018.03.012
Sun S , Ma M , He X , et al. , 2020. Vegetation mediated mercury flux and atmospheric mercury in the alpine permafrost region of the central Tibetan Plateau. Environmental Science & Technology, 54: 6043-6052. DOI: 10.1021/acs.est. 9b06636 .
doi: 10.1021/acs.est. 9b06636
Tripathee L , Guo J , Kang S , et al. , 2019. Spatial and temporal distribution of total mercury in atmospheric wet precipitation at four sites from the Nepal-Himalayas. Science of the Total Environment, 655: 1207-1217. DOI: 10.1016/j.scitotenv.2018.11.338 .
doi: 10.1016/j.scitotenv.2018.11.338
Tripathee L , Guo J , Kang S , et al. , 2020. Measurement of mercury, other trace elements and major ions in wet deposition at Jomsom: the semi-arid mountain valley of the Central Himalaya. Atmospheric Research, 234: 104691. DOI: 10. 1016/j.atmosres.2019.104691 .
doi: 10. 1016/j.atmosres.2019.104691
Ullrich SM , Tanton TW , Abdrashitova SA , 2001. Mercury in the aquatic environment: a review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31: 241-293. DOI: 10.1080/20016491089226 .
doi: 10.1080/20016491089226
Wang X , Dong Z , Zhang J , et al. , 2004. Modern dust storms in China: an overview. Journal of Arid Environments, 58: 559-574. DOI: 10.1016/j.jaridenv.2003.11.009 .
doi: 10.1016/j.jaridenv.2003.11.009
Wang X , Luo J , Yin R , et al. , 2017. Using mercury isotopes to understand mercury accumulation in the montane forest floor of the Eastern Tibetan Plateau. Environmental Science & Technology, 51(2): 801-809. DOI: 10.1021/acs.est.6b03806 .
doi: 10.1021/acs.est.6b03806
Wang X , Luo J , Yuan W , et al. , 2020. Global warming accelerates uptake of atmospheric mercury in regions experiencing glacier retreat. Proceedings of the National Academy of Sciences, 117(4): 2049-2055. DOI: 10.1073/pnas.1906930117 .
doi: 10.1073/pnas.1906930117
Wang Z , Wang Q , Zhao L , et al. , 2016. Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau. Journal of Mountain Science, 13: 1035-1046. DOI: 10.1007/s11629-015-3485-y .
doi: 10.1007/s11629-015-3485-y
Xu X , Zhang Q , Wang W , 2016. Linking mercury, carbon, and nitrogen stable isotopes in Tibetan biota: Implications for using mercury stable isotopes as source tracers. Scientific Reports, 6(1): 1-10. DOI: 10.1038/srep25394 .
doi: 10.1038/srep25394
Yang M , Wang X , Pang G , et al. , 2019. The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes. Earth-Science Reviews, 190: 353-369. DOI: 10.1016/j.earscirev.2018.12.018 .
doi: 10.1016/j.earscirev.2018.12.018
Yang R , Jing C , Zhang Q , et al. , 2011. Polybrominated diphenyl ethers (PBDEs) and mercury in fish from lakes of the Tibetan Plateau. Chemosphere, 83: 862-867. DOI: 10. 1016/j.chemosphere.2011.02.060 .
doi: 10. 1016/j.chemosphere.2011.02.060
Yang R , Zhang S , Li A , et al. , 2013. Altitudinal and spatial signature of persistent organic pollutants in soil, lichen, conifer needles, and bark of the Southeast Tibetan Plateau: implications for sources and environmental cycling. Environmental Science & Technology, 47: 12736-12743. DOI: 10.1021/es403562x .
doi: 10.1021/es403562x
Yao T , Thompson LG , Mosbrugger V , et al. , 2012. Third pole environment (TPE). Environmental Development, 3: 52-64. DOI: 10.1016/j.envdev.2012.04.002 .
doi: 10.1016/j.envdev.2012.04.002
Yin X , Kang S , Foy BD , et al. , 2018. Multi-year monitoring of atmospheric total gaseous mercury at a remote high-altitude site (Nam Co, 4,730 m a.s.l.) in the inland Tibetan Plateau region. Atmospheric Chemistry and Physics, 18: 10557-10574. DOI: 10.5194/acp-18-10557-2018 .
doi: 10.5194/acp-18-10557-2018
Zemp M , Huss M , Thibert E , et al. , 2019. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568: 382-386. DOI: 10.1038/s41586-019-1071-0 .
doi: 10.1038/s41586-019-1071-0
Zhang H , Fu X , Lin C , et al. , 2016. Monsoon-facilitated characteristics and transport of atmospheric mercury at a high-altitude background site in southwestern China. Atmospheric Chemistry and Physics, 16: 13131-13148. DOI: 10.5194/acp-16-13131-2016 .
doi: 10.5194/acp-16-13131-2016
Zhang H , Fu X , Lin C , et al. , 2015a. Observation and analysis of speciated atmospheric mercury in Shangri-La, Tibetan Plateau, China. Atmospheric Chemistry and Physics, 15: 653-665. DOI: 10.5194/acp-15-653-2015 .
doi: 10.5194/acp-15-653-2015
Zhang L , Wang S , Wang L , et al. , 2015b. Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environmental Science & Technology, 49: 3185-3194. DOI: 10.1021/es504840m .
doi: 10.1021/es504840m
Zhang Q , Huang J , Wang F , et al. , 2012. Mercury distribution and deposition in glacier snow over western China. Environmental Science & Technology, 46: 5404-5413. DOI: 10.1021/es300166x .
doi: 10.1021/es300166x
Zhang Q , Pan K , Kang S , et al. , 2014. Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau. Environmental Science & Technology, 48: 5220-5228. DOI: 10.1021/es404275v .
doi: 10.1021/es404275v
Zhang Q , Kang S , Gabrielli P , et al. , 2015c. Vanishing high mountain glacial archives: challenges and perspectives. Environmental Science & Technology, 49: 9499-9500. DOI: 10.1021/acs.est.5b03066 .
doi: 10.1021/acs.est.5b03066
Zhang Q , Zhang F , Kang S , et al. , 2017. Melting glaciers: Hidden hazards. Science, 356: 495. DOI: 10.1126/science.aan4118 .
doi: 10.1126/science.aan4118
Zhang Q , Sun X , Sun S , et al. , 2019. Understanding mercury cycling in Tibetan glacierized mountain environment: recent progress and remaining gaps. Bulletin of Environmental Contamination and Toxicology, 102: 672-678. DOI: 10.1007/s00128-019-02541-0 .
doi: 10.1007/s00128-019-02541-0
Zheng W , Kang S , Feng X , et al. , 2010. Mercury speciation and spatial distribution in surface waters of the Yarlung Zangbo River, Tibet. Chinese Science Bulletin, 55: 2697-2703. DOI: 10.1007/s11434-010-4001-y. (in Chinese)
doi: 10.1007/s11434-010-4001-y.
Zou D , Zhao L , Yu S , et al. , 2017. A new map of permafrost distribution on the Tibetan Plateau. The Cryosphere, 11(6): 2527. DOI: 10.5194/tc-11-2527-2017 .
doi: 10.5194/tc-11-2527-2017
Ahn MC , Yi SM , Holsen TM , et al. , 2011. Mercury wet deposition in rural Korea: concentrations and fluxes. Journal of Environmental Monitoring, 13(10): 2748-2754. DOI: 10. 1039/C1EM10014A .
doi: 10. 1039/C1EM10014A
Fang F , Wang Q , Li J , 2004. Urban environmental mercury in Changchun, a metropolitan city in Northeastern China: source, cycle, and fate. Science of the Total Environment, 330(1-3): 159-170. DOI: 10.1016/j.scitotenv.2004.04.006 .
doi: 10.1016/j.scitotenv.2004.04.006
Fu X , Feng X , Zhu W , et al. , 2010a. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China. Environmental Pollution, 158: 2324-2333. DOI: 10.1016/j.envpol.2010.01.032 .
doi: 10.1016/j.envpol.2010.01.032
Fu X , Feng X , Dong Z , et al. , 2010b. Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China. Atmospheric Chemistry and Physics,10(5): 2425-2437. DOI: 10.5194/acp-10-2425-2010 .
doi: 10.5194/acp-10-2425-2010
Huang J , 2011. Study on Spatial and Temporal Variations of Speciated Mercury in Precipitation of the Tibetan Plateau and Its Adjacent Regions. Ph.D thesis, Graduate University of Chinese Academy of Sciences. (in Chinese)
Huang J , Kang S , Guo J , et al. , 2012a. Seasonal variations, speciation and possible sources of mercury in the snowpack of Zhadang glacier, Mt. Nyainqêntanglha, southern Tibetan Plateau. Science of the Total Environment, 429: 223-230. DOI: 10.1016/j.scitotenv.2012.04.045 .
doi: 10.1016/j.scitotenv.2012.04.045
Huang J , Kang S , Zhang Q , et al. , 2012b. Wet deposition of mercury at a remote site in the Tibetan Plateau: concentrations, speciation, and fluxes. Atmospheric Environment, 62: 540-550. DOI: 10.1016/j.atmosenv.2012.09.003 .
doi: 10.1016/j.atmosenv.2012.09.003
Huang J , Kang S , Wang S , et al. , 2013. Wet deposition of mercury at Lhasa, the capital city of Tibet. Science of the Total Environment, 447: 123-132. DOI: 10.1016/j.scitotenv. 2013.01.003 .
doi: 10.1016/j.scitotenv. 2013.01.003
Huang J , Kang S , Guo J , et al. , 2014. Mercury distribution and variation on a high-elevation mountain glacier on the northern boundary of the Tibetan Plateau. Atmospheric Environment, 96: 27-36. DOI: 10.1016/j.atmosenv.2014.07.023 .
doi: 10.1016/j.atmosenv.2014.07.023
Huang J , Kang S , Zhang Q , et al. , 2015. Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau. Environmental Pollution, 206: 518-526. DOI: 10.1016/j.envpol.2015.07.024 .
doi: 10.1016/j.envpol.2015.07.024
Keeler GJ , Landis MS , Norris GA , et al. , 2006. Sources of mercury wet deposition in eastern Ohio, USA. Environmental Science & Technology, 40(19): 5874-5881. DOI: 10.1021/es060377q .
doi: 10.1021/es060377q
Lai S , Holsen TM , Hopke PK , et al. , 2007. Wet deposition of mercury at a New York state rural site: concentrations, fluxes, and source areas. Atmospheric Environment, 41(21): 4337-4348. DOI: 10.1016/j.atmosenv.2007.01.057 .
doi: 10.1016/j.atmosenv.2007.01.057
Liu JH , 1997. The Preliminary Study Onmercury Contamination in Beijing City. A Dissertation for Doctor'S Degree. Ph.D thesis, Graduate University of Chinese Academy of Sciences. (in Chinese)
Loewen M , Kang S , Armstrong D , et al. , 2007. Atmospheric transport of mercury to the Tibetan Plateau. Environmental Science & Technology, 41: 7632-7638. DOI: 10.1021/es0710398 .
doi: 10.1021/es0710398
Lombard M , Bryce J , Mao H , et al. , 2011. Mercury deposition in southern New Hampshire, 2006-2009. Atmospheric Chemistry and Physics, 11(15): 7657-7668. DOI: 10.5194/acp-11-7657-2011 .
doi: 10.5194/acp-11-7657-2011
Louis VLS , Rudd JW , Kelly CA , et al. , 1995. Wet deposition of methyl mercury in northwestern Ontario compared to other geographic locations. Water, Air, and Soil Pollution, 80(1-4): 405-414. DOI: 10.1007/BF01189690 .
doi: 10.1007/BF01189690
MDN , 2010. Annual Summary: National Atmospheric Deposition Program-Mercury Deposition Network.
Paudyal R , Kang S , Huang J , et al. , 2017. Insights into mercury deposition and spatiotemporal variation in the glacier and melt water from the central Tibetan Plateau. Science of the Total Environment, 599: 2046-2053. DOI: 10.1016/j.scitotenv.2017.05.145 .
doi: 10.1016/j.scitotenv.2017.05.145
Paudyal R , Kang S , Tripathee L , et al. , 2019. Concentration, spatiotemporal distribution, and sources of mercury in Mt. Yulong, a remote site in southeastern Tibetan Plateau. Environmental Science and Pollution Research, 26: 16457-16469. DOI: 10.1007/s11356-019-05005-4 .
doi: 10.1007/s11356-019-05005-4
Sanei H , Outridge P , Goodarzi F , et al. , 2010. Wet deposition mercury fluxes in the Canadian sub-Arctic and southern Alberta, measured using an automated precipitation collector adapted to cold regions. Atmospheric Environment, 44(13): 1672-1681. DOI: 10.1016/j.atmosenv.2010.01.030 .
doi: 10.1016/j.atmosenv.2010.01.030
Seo YS , Han YJ , Choi HD , et al. , 2012. Characteristics of total mercury (TM) wet deposition: scavenging of atmospheric mercury species. Atmospheric Environment, 49: 69-76. DOI: 10.1016/j.atmosenv.2011.12.031 .
doi: 10.1016/j.atmosenv.2011.12.031
Sheu GR , Lin NH , 2013. Characterizations of wet mercury deposition to a remote islet (Pengjiayu) in the subtropical Northwest Pacific Ocean. Atmospheric Environment, 77: 474-481. DOI: 10.1016/j.atmosenv.2013.05.038 .
doi: 10.1016/j.atmosenv.2013.05.038
Sun S , Kang S , Guo J , et al. , 2018. Insights into mercury in glacier snow and its incorporation into meltwater runoff based on observations in the southern Tibetan Plateau. Journal of Environmental Sciences, 68: 130-142. DOI: 10.1016/j.jes. 2018.03.033 .
doi: 10.1016/j.jes. 2018.03.033
Tripathee L , Guo J , Kang S , et al. , 2019. Spatial and temporal distribution of total mercury in atmospheric wet precipitation at four sites from the Nepal-Himalayas. Science of the Total Environment, 655: 1207-1217. DOI: 10.1016/j.scitotenv.2018.11.338 .
doi: 10.1016/j.scitotenv.2018.11.338
Wan Q , Feng X , Lu J , et al. , 2009. Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes. Environmental Research, 109: 721-727. DOI: 10.1016/j.envres.2009.05.006 .
doi: 10.1016/j.envres.2009.05.006
Wang Z , Zhang X , Xiao J , et al. , 2009. Mercury fluxes and pools in three subtropical forested catchments, southwest China. Environmental Pollution, 157(3): 801-808. DOI: 10. 1016/j.envpol.2008.11.018 .
doi: 10. 1016/j.envpol.2008.11.018
Zhang Q , Huang J , Wang F , et al. , 2012a. Mercury distribution and deposition in glacier snow over western China. Environmental Science & Technology, 46: 5404-5413. DOI: 10.1021/es300166x .
doi: 10.1021/es300166x
Zhang X , Siddiqi Z , Song X , et al. , 2012b. Atmospheric dry and wet deposition of mercury in Toronto. Atmospheric Environment, 50: 60-65. DOI: 10.1016/j.atmosenv.2011. 12.062 .
doi: 10.1016/j.atmosenv.2011. 12.062
[1] GuoNing Wan,MeiXue Yang,XueJia Wang. Ground temperature variation and its response to climate change on the northern Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2021, 13(4): 299-313.
[2] Poonam Thapa,JianZhong Xu,Bigyan Neupane. A concise overview on historical black carbon in ice cores and remote lake sediments in the northern hemisphere [J]. Sciences in Cold and Arid Regions, 2021, 13(3): 179-194.
[3] JinLei Chen,Jun Wen,ShiChang Kang,XianHong Meng,XianYu Yang. The evapotranspiration and environmental controls of typical underlying surfaces on the Qinghai-Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2021, 13(1): 53-61.
[4] YongJian Ding,JianPing Yang,ShengXia Wang,YaPing Chang. A review of the interaction between the cryosphere and atmosphere [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 329-342.
[5] ShiQiao Zhou. A note on the lake level variations of Nam Co, south-central Tibetan Plateau from 2005 to 2019 [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 430-435.
[6] KunXin Wang,YinSheng Zhang,Ning Ma,YanHong Guo,YaoHui Qiang. Cryosphere evapotranspiration in the Tibetan Plateau: A review [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 355-370.
[7] Xin Wang,Qiao Liu,ShiYin Liu,GuangLi He. Manifestations and mechanisms of mountain glacier-related hazards [J]. Sciences in Cold and Arid Regions, 2020, 12(6): 436-446.
[8] PengFei Lin,ZhiBin He,Jun Du,LongFei Chen,Xi Zhu,QuanYan Tian. Processes of runoff in seasonally-frozen ground about a forested catchment of semiarid mountains [J]. Sciences in Cold and Arid Regions, 2020, 12(5): 272-283.
[9] TanGuang Gao,Jie Liu,TingJun Zhang,ShiChang Kang,ChuanKun Liu,ShuFa Wang,Mika Sillanpää,YuLan Zhang. Estimating interaction between surface water and groundwater in a permafrost region of the northern Tibetan Plateau using heat tracing method [J]. Sciences in Cold and Arid Regions, 2020, 12(2): 71-82.
[10] ZeYong Hu,ZhiPeng Xie. Origin and advances in implementing blowing-snow effects in the Community Land Model [J]. Sciences in Cold and Arid Regions, 2019, 11(5): 335-339.
[11] JianPing Yang. Studies on eco-environmental change in source regions of the Yangtze and Yellow Rivers of China:present and future [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 173-183.
[12] Rui Chen,MeiXue Yang,XueJia Wang,GuoNing Wan. Review on simulation of land-surface processes on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 93-115.
[13] RuiQing Li,YanHong Gao,DeLiang Chen,YongXin Zhang,SuoSuo Li. Contrasting vegetation changes in dry and humid regions of the Tibetan Plateau over recent decades [J]. Sciences in Cold and Arid Regions, 2018, 10(6): 482-492.
[14] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379-391.
[15] HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207-218.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!