Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (2): 100-108.doi: 10.3724/SP.J.1226.2022.21006.

   

Coarse fragment content influences estimates of soil C and N stocks of alpine grassland on the northeastern edge of Qinghai-Tibetan Plateau, China

Yu Qin1(),ShuHua Yi2,JianJun Chen3   

  1. 1.State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, No. 320 West Donggang Road, Lanzhou, Gansu 730000, China
    2.Institute of Fragile Ecosystem and Environment, Nantong University, No. 999 Tongjing Road, Nantong, Jiangsu 226007, China
    3.Guangxi Key Laboratory of Spatial Information and Geomatics, No. 12 Jiangan Road, Guilin, Guangxi 541004, China
  • Received:2021-01-15 Accepted:2021-03-02 Online:2022-04-30 Published:2022-04-25
  • Contact: Yu Qin E-mail:qiny@lzb.ac.cn
  • Supported by:
    the National Natural Science Foundation(42071139);Gansu province Science Fund for Distinguished Young Scholars(21JR7RA066);the independent grants from the State Key Laboratory of Cryosphere Sciences(SKLCS-ZZ-2021)

Abstract:

Soil organic carbon (SOC) and total nitrogen (TN) stocks are usually calculated with samples collected using core samplers. Although the calculation considers the effects of gravel in soil samples, other coarse fragments such as stones or boulders in soil may not be collected due to the restricted diameter of core samplers. This would cause an incorrect estimation of soil bulk density and ultimately SOC and TN stocks. In this study, we compared the relative volume of coarse fragment and bulk density of fine earth determined by large size soil sampler with three core samplers. We also investigated the uncertainties in estimation of SOC and TN stocks caused by this soil sampler procedure in three typical alpine grasslands on the northeast edge of the Qinghai-Tibetan Plateau (QTP), China. Results show that (1) the relative volume and size of coarse fragment collected by large size sampler were significantly (p <0.05) higher and larger than those of core samplers, while bulk density of fine earth, SOC and TN stocks show opposite patterns in all grassland types; (2) SOC and TN stocks determined by core samplers were 17%-45% and 18%-46% higher than larger size sampler for three typical alpine grasslands; and (3) bulk density of fine earth, SOC and TN stocks exponentially decreased with the increasing of coarse fragment content. We concluded that core sampler methods significantly underestimated the volume occupied by coarse fragment but overestimated SOC and TN stocks. Thus, corrections should be made to the results from core samplers using large size samplers on regions with gravel and stone-rich soils in future studies.

Key words: coarse fragment, sampler size, soil C, alpine grassland, the Qinghai-Tibetan Plateau

Table 1

Descriptions of the study sites"

Grassland typesSampling plotsDominant speciesFVC

AGB

(g/m2)

BGB

(kg/m2)

SOC

(g/kg)

TN

(g/kg)

Alpine meadowP1, 2, 3Kobresia capillifolia, Carex moorcroftii58.02%±2.58%339.47±18.1822.60±1.847.12±0.670.78±0.06
Steppe meadowP4, 5, 6Carex moorcroftii, Stipa purpurea31.79%±1.57%204.16±24.036.35±0.245.74±0.560.72±0.05
Alpine steppeP7, 8, 9Stipa purpurea, Artemisia minor27.35%±2.36%165.87±12.671.93±0.175.54±0.670.73±0.07

Figure 1

The location of sampling plots in the source region of the Shule River Basin"

Table 2

Detailed information of four soil samplers"

Sampler typesSampler shapeTotal volume (cm3)Diameter (cm)Length (cm)Width (cm)Depth (cm)
CS1cylinder1005--5
CS2cylinder2007--5.2
CS3cylinder50010--6.4
CS4square9,000-303010

Table 3

The effect of core samplers on σcoarse fragment, RFS, BDfine earth, SSOC and STN stocks"

Source of variationσcoarse fragmentCFSBDfine earthSSOCSTN
F valueP valueF valueP valueF valueP valueF valueP valueF valueP value
C21.86<0.001184.50<0.00169.59<0.00147.59<0.00169.050<0.001
D120.03<0.00127.85<0.0016.58<0.00182.48<0.001150.280<0.001
G17.52<0.0019.51<0.00147.42<0.0019.35<0.0013.7900.025
C×D2.000.042.690.0041.400.1002.30<0.0013.304<0.001
C×G1.530.184.070.00510.82<0.001159.000.0105.812<0.001
D×G13.86<0.0012.620.0046.10<0.0011.620.0602.0300.011
C×D×G2.07<0.0010.820.7101.190.1901.590.0101.7900.001

Figure 2

Mean relative volume of coarse fragment (σcoarse fragment) (a), mean size of coarse fragment (Scoarse fragment) (b) and bulk density of fine earth (BDfine earth) (c) in the top 1 m of typical grassland types. Error bars represent the standard error of the mean. CS1, CS2 and CS3 represent core samplers with diameters of 5, 7, and 9 cm; CS4 represents large size sampler (30 cm in length, 30 cm in width and 10 cm in depth)"

Figure 3

Soil organic carbon stock (SOC stock) of alpine meadow (a), steppe (b), steppe meadow (c), soil total nitrogen stock (TN stock) of alpine meadow (d), steppe (e) and steppe meadow (f) in soil profiles. Error bars represent the standard error of the mean. CS1, CS2 and CS3 represent core samplers with diameters of 5, 7, and 9 cm; CS4 represents large size sampler (30 cm in length, 30 cm in width and 10 cm in depth)"

Figure 4

Soil organic carbon stock (SOC stock) (a) and soil total nitrogen stock (TN stock) (b) in the top 1 m of typical grassland types. Error bars represent the standard error of the mean. CS1, CS2 and CS3 represent core samplers with diameters of 5, 7, and 9 cm; CS4 represents large size sampler (30 cm in length, 30 cm in width and 10 cm in depth)"

Figure 5

The relationships among the relative volume of coarse fragment (σcoarse fragment) and soil organic carbon stock (SOC stock) (a), soil total nitrogen stock (TN stock) (b) and bulk density of fine earth (BDfine earth) (c)"

Allen DE, Pringle MJ, Page KL, et al., 2010. A review of sampling designs for the measurement of soil organic carbon in Australian grazing lands. The Rangeland Journal, 32: 227-246. DOI: 10.1071/RJ09043 .
doi: 10.1071/RJ09043
Batjes NH, 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2): 151-163. DOI: 10.1111/ejss.12114-2 .
doi: 10.1111/ejss.12114-2
Chang XF, Wang SP, Cui SJ, et al., 2014. Alpine grassland soil organic carbon stock and its uncertainty in the Three Rivers Source Region of the Tibetan Plateau. PloS one, 9(5): e97140. DOI: 10.1371/journal.pone.0097140 .
doi: 10.1371/journal.pone.0097140
Chang YP, Ding YJ, Zhao QD, et al., 2016. Remote estimation of terrestrial evapotranspiration by Landsat 5 TM and the SEBAL model in cold and high-altitude regions: a case study of the upper reach of the Shule River basin, China. Hydrology Process, 31: 514-524. DOI: 10.1002/hyp.10854 .
doi: 10.1002/hyp.10854
De Baets S, Meersmans J, Vanacker V, et al., 2013. Spatial variability and change in soil organic carbon stocks in response to recovery following land abandonment and erosion in mountainous drylands. Soil Use and Management, 29: 65-76. DOI: 10.1111/sum.12017 .
doi: 10.1111/sum.12017
Eriksson CP, Holmgren P, 1996. Estimating stone and boulder content in forest soils-evaluating the potential of surface penetration methods. Catena, 28: 121-134. DOI: 10.1016/S0341-8162(96)00031-8 .
doi: 10.1016/S0341-8162(96)00031-8
Eswaran H, Van Den Berg E, Reich P, 1993. Organic carbon in soils of the world. Soil Science Society of America Journal, 57: 192-194. DOI: 10.2136/sssaj1993.03615995005700010034x .
doi: 10.2136/sssaj1993.03615995005700010034x
Goidts E, Van Wesemael B, Crucifix M, 2009. Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales. European Journal of Soil Science, 60(5): 723-739. DOI: 10.1111/j.1365-2389. 2009.01157.x .
doi: 10.1111/j.1365-2389. 2009.01157.x
Heimann M, Reichstein M, 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451: 289-292. DOI: 10.1038/nature06591 .
doi: 10.1038/nature06591
Houghton RA, 2007. Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences, 35: 313-347. DOI: 10.1146/annurev.earth.35.031306.140057 .
doi: 10.1146/annurev.earth.35.031306.140057
Jobbágy EG, Jackson RB, 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2): 423-436. DOI: 10. 2307/2641104 .
doi: 10. 2307/2641104
Johnston CA, Groffman P, Breshears DD, et al., 2004. Carbon cycling in soil. Frontiers in Ecology and the Environment, 2(10): 522-528. DOI: 10.2307/3868382 .
doi: 10.2307/3868382
Lal R, 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677): 1623-1627. DOI: 10.1126/science.1097396 .
doi: 10.1126/science.1097396
Leifeld J, Bassin S, Fuhrer J, 2005. Carbon stocks in Swiss agricultural soils predicted by land-use soil characteristics, and altitude. Agriculture Ecosystems and Environment, 105: 255-266. DOI: 10.1016/j.agee.2004.03.006 .
doi: 10.1016/j.agee.2004.03.006
Liski J, Westman CJ, 1997. Carbon storage in forest soil of Finland. 2. Size and regional pattern. Biogeochemistry, 36(3): 261-274. DOI: 10.1023/A:1005742523056 .
doi: 10.1023/A:1005742523056
Liu WJ, Chen SY, Qin X, et al., 2012. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environmental Research Letters, 7(3): 035401. DOI: 10.1088/1748-9326/7/3/035401 .
doi: 10.1088/1748-9326/7/3/035401
Meersmans J, Martin M, Ridder F, et al., 2012. A novel soil organic C model using climate, soil type and management data at the national scale in France. Agronomy for Sustainable Development, 32: 873-888. DOI: 10.1007/s13593-012-0085-x .
doi: 10.1007/s13593-012-0085-x
Miller FT, Guthrie RL, 1984. Classification and distribution of soils containing rock fragments in the United States. Soil Science Society of America Journal, 13: 1-6. DOI: 10. 2136/sssaspecpub13.c1 .
doi: 10. 2136/sssaspecpub13.c1
Mu C, Abbott BW, Norris AJ, et al., 2020. The status and stability of permafrost carbon on the Tibetan Plateau. Earth-Science Reviews, 211: 103433. DOI: 10.1016/j.earscirev.2020. 103433 .
doi: 10.1016/j.earscirev.2020. 103433
Ni J, 2002. Carbon stock in grasslands of China. Journal of Arid Environment, 50: 205-218. DOI: 10.1006/jare.2201. 0902 .
doi: 10.1006/jare.2201. 0902
Poesen J, Lavee H, 1994. Rock fragments in top soils: significance and processes. Catena, 23: 1-28. DOI: 10.1016/0341-8162(94)90050-7 .
doi: 10.1016/0341-8162(94)90050-7
Qin Y, Yi SH, Ren SL, et al., 2014. Responses of typical grasslands in a semi-arid basin on the Qinghai-Tibetan Plateau to climate change and disturbances. Environmental Earth Sciences, 71(3): 1421-1431. DOI: 10.1007/s12665-013-2547-0 .
doi: 10.1007/s12665-013-2547-0
Qin Y, Yi SH, Chen JJ, et al., 2015a. Effects of gravel on soil and vegetation properties of alpine grassland on the Qinghai-Tibetan Plateau. Ecological Engineering, 74: 351-355. DOI: 10.1016/j.ecoleng.2014.10.008 .
doi: 10.1016/j.ecoleng.2014.10.008
Qin Y, Chen JJ, Yi SH, 2015b. Plateau pikas burrowing activity accelerates ecosystem carbon emission from alpine grassland on the Qinghai-Tibetan Plateau. Ecological Engineering, 84: 287-291. DOI: 10.1016/j.ecoleng.2015.09.012 .
doi: 10.1016/j.ecoleng.2015.09.012
Rytter R, 2012. Stone and gravel contents of arable soils influence estimates of C and N stocks. Catena, 95: 153-159. DOI: 10.1016/j.catena.2012.02.015 .
doi: 10.1016/j.catena.2012.02.015
Schimel DS, 1995. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1: 77-91. DOI: 10.1111/j. 1365-2486.1995.tb00008.x .
doi: 10.1111/j. 1365-2486.1995.tb00008.x
Schrumpf M, Schulze ED, Kaiser K, et al., 2011. How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences Discussion, 8(1): 723-769. DOI: 10.5194/bgd-8-723-2011 .
doi: 10.5194/bgd-8-723-2011
Shantz H, 1954. The place of grasslands in the Earth's cover. Ecology, 35: 143-145. DOI: 10.2307/1931110 .
doi: 10.2307/1931110
Stendahl J, Lundin L, Nilsson T, 2009. The stone and boulder content of Swedish forest soils. Catena, 7: 285-291. DOI: 10.1016/j.catena.2009.02.011 .
doi: 10.1016/j.catena.2009.02.011
Stewart V, Adams W, Abdulla H, 1970. Quantitative pedological studies on soils derived from silurian mudstones: II the relationship between stone content and the apparent density of the fine earth. Journal of Soil Science, 21(2): 248-255. DOI: 10.1111/j.1365-2389.1970.tb01173.x .
doi: 10.1111/j.1365-2389.1970.tb01173.x
Sucre EB, Tuttle JW, Fox TR, 2011. The use of ground-penetrating radar to accurately estimate soil depth in rocky forest soils. Forest Science, 57: 59-66. DOI: 10.1093/forestscience/57.1.59 .
doi: 10.1093/forestscience/57.1.59
Torri D, Poesen J, Monaci F, et al., 1994. Rock fragment content and fine soil bulk density. Catena, 23(1): 65-71. DOI: 10.1016/0341-8162(94)90053-1 .
doi: 10.1016/0341-8162(94)90053-1
Viro PJ, 1952. On the determination of stoniness. Communicationes Instituti Forestalis Fenniae, 40(3): 1-23.
Viro PJ, 1958. Stoniness of forest soils in Finland. Communicationes Instituti Forestalis Fenniae, 49(4): 1-45.
Wang GX, Qian J, Cheng GD, et al., 2002. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan and its global implication. Science of the Total Environment, 291: 207-217. DOI: 10.1016/S0048-9697(01)01100-7 .
doi: 10.1016/S0048-9697(01)01100-7
Wang XY, Li YQ, Li YL, et al., 2020. Comparison of sampling schemes for spatial prediction of soil organic carbon in Northern China. Sciences in Cold and Arid Regions, 12(4): 200-216. DOI: 10.3724/SP.J.1226.2020.00217 .
doi: 10.3724/SP.J.1226.2020.00217
Wu JK, Zhang SQ, Wu H, et al., 2015. Actual evapotranspiration in Suli alpine meadow in northeastern edge of Qinghai-Tibet Plateau, China. Advances in Meteorology, 3: 1-10. DOI: 10.1155/2015/593649 .
doi: 10.1155/2015/593649
Wu XD, Zhao L, Chen Mj, et al., 2012. Soil organic carbon and its relationship to vegetation communities and soil properties in permafrost areas of the central western Qinghai-Tibet plateau, china. Permafrost and Periglacial Processes, 23(2): 162-169. DOI: 10.1002/ppp.1740 .
doi: 10.1002/ppp.1740
Yang JP, Mi R, Liu JF, 2009a. Variations in soil properties and their effect on subsurface biomass distribution in four alpine meadows of the hinterland of the Tibetan Plateau of China. Environmental Geology, 57(8): 1881-1891. DOI: 10.1007/s00254-008-1477-8 .
doi: 10.1007/s00254-008-1477-8
Yang YH, Fang JY, Ji CJ, et al., 2009b. Above- and belowground biomass allocation in Tibetan grasslands. Journal of Vegetation Science, 20: 177-184. DOI: 10.1111/j.1654-1103. 2009.05566.x .
doi: 10.1111/j.1654-1103. 2009.05566.x
Yang YH, Fang JY, Ji CJ, et al., 2010. Soil inorganic carbon stock in the Tibetan alpine grasslands. Global Biogeochemical Cycles, 24(4): GB4022. DOI: 10.1029/2010GB003804 .
doi: 10.1029/2010GB003804
Yang YH, Fang JY, Tang YH, et al., 2008. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 14: 1595-1599. DOI: 10. 1111/j.1365-2486.2008.01591.x .
doi: 10. 1111/j.1365-2486.2008.01591.x
Yi SH, Zhou ZY, Ren SL, et al., 2011. Effects of permafrost degradation on alpine grassland in a semiarid basin on the Qinghai-Tibetan Plateau. Environmental Research Letters, 6: 045403. DOI: 10.1088/1748-9326/6/4 .
doi: 10.1088/1748-9326/6/4
[1] WenQiang Zhang,YongHong Niu. Numerical simulations on cutting of frozen soil using HJC Model [J]. Sciences in Cold and Arid Regions, 2020, 12(3): 134-143.
[2] JianPing Yang. Studies on eco-environmental change in source regions of the Yangtze and Yellow Rivers of China:present and future [J]. Sciences in Cold and Arid Regions, 2019, 11(3): 173-183.
[3] LiNa Zhao,XinRong Li,ShiWei Yuan,YuBing Liu. Shifts in community structure and function of ammonia-oxidizing archaea in biological soil crusts along a revegetation chronosequence in the Tengger Desert [J]. Sciences in Cold and Arid Regions, 2019, 11(2): 139-149.
[4] CuiHua Huang,Fei Peng,Itaru Shibata,Jun Luo,Xian Xue,Kinya Akashi,Atsushi Tsunekawa,Tao Wang. Increase in medium-size rainfall events will enhance the C-sequestration capacity of biological soil crusts [J]. Sciences in Cold and Arid Regions, 2019, 11(1): 81-92.
[5] YuTing Liang, XingDong He, JianTan Guo, HongJuan Jing. Effects of N:P ratio of Artemisia ordosica on growth influenced by soil calcium carbonate [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 333-339.
[6] Olof Andrén, XueYong Zhao, Thomas Kätterer, Martin Bolinder. Agroecosystem research in Uppsala, Sweden and Naiman, China:Some observations 1987-2014 [J]. Sciences in Cold and Arid Regions, 2016, 8(1): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!