Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (6): 430–435.doi: 10.3724/SP.J.1226.2020.00430

• • 上一篇    下一篇

  

  • 收稿日期:2020-10-09 接受日期:2020-12-15 出版日期:2020-12-31 发布日期:2021-01-14

A note on the lake level variations of Nam Co, south-central Tibetan Plateau from 2005 to 2019

ShiQiao Zhou1,2()   

  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-10-09 Accepted:2020-12-15 Online:2020-12-31 Published:2021-01-14
  • Contact: ShiQiao Zhou E-mail:zhoushq@itpcas.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(41771092);the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20020102);the National Key Research and Development Program of China(2017YFA0603101);the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0202)

Abstract:

Tibetan lake levels are sensitive to global change, and their variations have a large impact on the environment, local agriculture and animal husbandry practices. While many remote sensing data of Tibetan lake level changes have been reported, few are from in-situ measurements. This note presents the first in-situ lake level time series of the central Tibetan Plateau. Since 2005, daily lake level observations have been performed at Lake Nam Co, one of the largest on the Tibetan Plateau. The interannual lake level variations show an overall increasing trend from 2006 to 2014, a rapid decrease from 2014 to 2017, and a surge from 2017 to 2018. The annual average lake level of the hydrological year (May-April) rose 66 cm from 2006 to 2014, dropped 59 cm from 2014 to 2017, and increased 20 cm from 2017 to 2018, resulting in a net rise of 27 cm or an average rate of about 2 cm per year. Compared to the annual average lake level based on the calendar year, it is better to use the annual average lake level based on the hydrological year to determine the interannual lake level changes. As the lake level was stable in May, it is appropriate to compare May lake levels when examining interannual lake level changes with fewer data. Overall, remote sensing results agree well with the in-situ lake level observations; however, some significant deviations exist. In the comparable 2006-2009 period, the calendar-year average lake level observed in-situ rose by 10-11 cm per year, which is lower than the ICESat result of 18 cm per year.

Key words: Lake Nam Co, lake level change, in-situ measurement, Tibetan Plateau

"

"

"

Year20052006200720082009201020112012201320142015201620172018
MayN/A2555323225224
JuneN/A651974136146613910
July9 (~31)1013281313232121166151521
August24122120192413104251341823
September1461116514459757413
October51096119514731371413
November75101015125152116121312N/A
December7817108 (~25)5 (~26)87 (~19)5 (~15)148 (~20)6 (~21)6 (~20)N/A
Bai H, Xie J, Li D, 2001. The principal feature of Qinghai-Xizang Plateau monsoon variation in 40 years. Plateau Meteorology, 20(1): 22-27. (in Chinese)
Bian D, Yang Z, Li L, et al., 2006. The response of lake area change to climate variations in north Tibetan Plateau during last 30 years. Acta Geographica Sinica, 61(5): 510-518. (in Chinese)
Crétaux JF, Jelinski W, Calmant S, et al., 2011. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Advances in Space Research, 47(9): 1497-1507. DOI: 10.1016/j.asr. 2011.01.004.
doi: 10.1016/j.asr. 2011.01.004
Chu D, Pu Q, Wang D, et al., 2012. Water level variations of YamzhoYumco Lake in Tibet and the main driving forces. Journal of Mountain Science, 30(2): 239-247. (in Chinese)
Gao L, Liao J, Shen G, 2013. Monitoring lake-level changes in the Qinghai-Tibetan Plateau using radar altimeter data (2002-2012). Journal of Applied Remote Sensing, 7(1): 073470. DOI: 10.1117/1.JRS.7.073470.
doi: 10.1117/1.JRS.7.073470
Ge S, Zonggha, 2005. A preliminary study on the change of lake areas in western Naqu, Tibet. Tibetan Science and Technology, 144: 14-18. (in Chinese)
Jacob T, Wahr J, Pfeffer WT, et al., 2012. Recent contributions of glaciers and ice caps to sea level rise. Nature, 482: 514-518. DOI: 10.1038/nature10847.
doi: 10.1038/nature10847
Kropáček J, Braun A, Kang S, et al., 2012. Analysis of lake level changes in Nam Co in central Tibet utilizing synergistic satellite altimetry and optical imagery. International Journal of Applied Earth Observation and Geoinformation, 17: 3-11. DOI: 10.1016/j.jag.2011.10.001.
doi: 10.1016/j.jag.2011.10.001
Lei Y, Yao T, Bird BW, et al., 2013. Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. Journal of Hydrology, 483: 61-67. DOI: 10.1016/j.jhydrol.2013.01.003.
doi: 10.1016/j.jhydrol.2013.01.003
Lei Y, Yao T, Yang K, et al., 2017. Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology. Geophysical Research Letters, 44: 892-900. DOI: 10.1002/2016GL072062.
doi: 10.1002/2016GL072062
Li X, Xu H, Sun Y, et al., 2007. Lake-level change and water balance analysis at Lake Qinghai, west China during recent decades. Water Resources Management, 21: 1505-1516. DOI: 10.1007/s11269-006-9096-1.
doi: 10.1007/s11269-006-9096-1
Liu J, Wang Z, Yu S, et al., 2009. Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau. Global and Planetary Change, 67: 209-217. DOI: 10.1016/j.gloplacha.2009.03.010.
doi: 10.1016/j.gloplacha.2009.03.010
Lu A, Yao T, Wang L, et al., 2005. Study on the fluctuations of typical glaciers and lakes in the Tibetan Plateau using remote sensing. Journal of Glaciology and Geocryology, 27(6): 783-792. (in Chinese)
Phan VH, Lindenbergh R, Menenti M, 2012. ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. International Journal of Applied Earth Observation and Geoinformation, 17: 12-22. DOI: 10.1016/j.jag.2011. 09.015.
doi: 10.1016/j.jag.2011. 09.015
Song C, Huang B, Ke L, et al., 2014. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. Journal of Hydrology, 514: 131-144. DOI: 10.1016/j.jhydrol.2014. 04.018.
doi: 10.1016/j.jhydrol.2014. 04.018
Song C, Ye Q, Cheng X, 2015a. Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations. Science Bulletin, 60(14): 1287-1297. DOI: 10.1007/s11434-015-0826-8.
doi: 10.1007/s11434-015-0826-8
Song C, Ye Q, Sheng Y, et al., 2015b. Combined ICESat and CryoSat-2 altimetry for accessing water level dynamics of Tibetan lakes over 2003-2014. Water, 7(9): 4685-4700. DOI: 10.3390/w7094685.
doi: 10.3390/w7094685
Wang X, Gong P, Zhao Y, et al., 2013. Water-level changes in China's large lakes determined from ICESat/GLAS data. Remote Sensing of Environment, 132: 131-144. DOI: 10. 1016/j.rse.2013.01.005.
doi: 10. 1016/j.rse.2013.01.005
Wu H, Wang N, Jiang X, et al., 2014. Variations in water level and glacier mass balance in Nam Co lake, Nyainqentanglha range, Tibetan Plateau, based on ICESat data for2003-09. Annuals of Glaciology, 55(66): 239-247. DOI: 10.3189/2014AoG66A100.
doi: 10.3189/2014AoG66A100
Yang K, Yao F, Wang J, et al., 2017. Recent dynamics of alpine lakes on the endorheic Changtang Plateau from multi-mission satellite data. Journal of Hydrology, 552: 633-645. DOI: 10.1016/j.jhydrol.2017.07.024.
doi: 10.1016/j.jhydrol.2017.07.024
Zhang B, Wu Y, Zhu L, et al., 2011. Estimation and trend detection of water storage at Nam Co Lake, central Tibetan Plateau. Journal of Hydrology, 405: 161-170. DOI: 10. 1016/j.jhydrol.2011.05.018.
doi: 10. 1016/j.jhydrol.2011.05.018
Zhang G, Xie H, Kang S, et al., 2011. Monitoring lake level changes on the Tibetan plateau using ICESat altimetry data (2003-2009). Remote Sensing of Environment, 115: 1733-1742. DOI: 10.1016/j.rse.2011.03.005.
doi: 10.1016/j.rse.2011.03.005
Zhang G, Yao T, Xie H, et al., 2013. Increased mass over the Tibetan Plateau: From lakes or glaciers? Geophysical Research Letters, 40: 2125-2130. DOI: 10.1002/grl.50462.
doi: 10.1002/grl.50462
Zhang G, Yao T, Shum CK, et al., 2017. Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin. Geophysical Research Letters, 44: 5550-5560. DOI: 10.1002/2017GL073773.
doi: 10.1002/2017GL073773
Zhang G, Chen W, Xie H, 2019. Tibetan Plateau's lake level and volume changes from NASA's ICESat/ICESat-2 and Landsat missions. Geophysical Research Letters, 46: 13107-13118. DOI: 10.1029/2019GL085032.
doi: 10.1029/2019GL085032
Zhou S, Kang S, Chen F, et al., 2013. Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau. Journal of Hydrology, 491: 89-99. DOI: 10.1016/j.jhydrol.2013. 03.030.
doi: 10.1016/j.jhydrol.2013. 03.030
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] . [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] . [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .