Sciences in Cold and Arid Regions ›› 2017, Vol. 9 ›› Issue (6): 534-542.doi: 10.3724/SP.J.1226.2017.00534

Previous Articles     Next Articles

Comparison of precipitation and evapotranspiration of five different land-cover types in the high mountainous region

Yong Yang, RenSheng Chen, YaoXuan Song, ChunTan Han, JunFeng Liu, ZhangWen Liu   

  1. Qilian Alpine Ecology and Hydrology Research Station, Key Laboratory of Ecohydrology Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2017-08-23 Online:2017-12-01 Published:2018-11-23
  • Contact: Professor RenSheng Chen, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences. No. 320, West Donggang Road, Lanzhou, Gansu 730000, China. E-mail:crs2008@lzb.ac.cn E-mail:crs2008@lzb.ac.cn
  • Supported by:
    This work was carried out with financial support from the National Natural Sciences Foundation of China (41401041) and the National Basic Research Program of China (2013CBA01806).

Abstract: Many rivers originate in high mountainous regions. However, the effects of climate warming on the runoff and water balance in these regions remain unclear due to the lack of observational data from harsh environments, and the variable influences of climate change on alpine land-cover types with different water balances. Using observations and simulations from CoupModel, water-balance values collected at five alpine land-cover types (steppe, shrub meadow, moist meadow, swamp meadow, and moraine) in a small alpine watershed, the Qilian Mountains in Northwest China, from October 2008 to September 2014, were compared. Measured evapotranspiration, multilayer soil temperatures and water contents, and frozen-depth data were used to validate CoupModel outputs. The results show that elevation is the primary influence on precipitation, evapotranspiration, and runoff coefficients in alpine regions. Land-cover types at higher elevations receive more precipitation and have a larger runoff coefficient. Notably, climate warming not only increases evapotranspiration but also particularly increases the evapotranspiration/precipitation ratio due to an upward shift in the optimum elevation of plant species. These factors lead to decrease runoff coefficients in alpine basins.

Key words: global warming, land-cover types, water balance, elevation, runoff coefficient

Beniston M, Stoffel M, 2014. Assessing the impacts of climatic change on mountain water resources. Sci Total Environ, 493: 1129-1137, DOI:10.1016/j.scitotenv.2013.11.122.
Bolch T, Kulkarni A, Kääb A, et al., 2012. The state and fate of Himalayan Glaciers. Science, 336(6079): 310-314, DOI:10.1126/science.1215828.
Chen R, Kang E, Lu S, et al., 2008. A distributed water-heat coupled model for mountainous watershed of an inland river basin in Northwest China (Ⅱ) using meteorological and hydrological data. Environmental Geology, 55(1): 17-28, DOI:10.1007/s00254-007-0960-y.
Chen RS, Song YX, Kang ES, et al., 2014. A cryosphere-hydrology observation system in a small Alpine Watershed in the Qilian Mountains of China and its meteorological gradient. Arctic, Antarctic, and Alpine Research, 46(2): 505-523, DOI:10.1657/1938-4246-46.2.505.
Cuo L, Zhang Y, Zhu F, et al., 2014. Characteristics and changes of streamflow on the Tibetan Plateau: A review. Journal of Hydrology: Regional Studies, 2: 49-68, DOI:10.1016/j.ejrh.2014.08.004.
Dolezal J, Dvorsky M, Kopecky M, et al., 2016. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Scientific Report, 6: 24881, DOI:10.1038/srep24881.
Dong W, Lin Y, Wright JS, et al., 2016. Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent. Nat Commun, 7: 10925, DOI:10.1038/ncomms10925.
Drotz SH, Tilston EL, Sparrman T, et al., 2009. Contributions of matric and osmotic potentials to the unfrozen water content of frozen soils. Geoderma, 148(3-4): 392-398, DOI:10.1016/j.geoderma.2008.11.007.
Feehan J, Harley M, Minnen J, 2009. Climate change in Europe. 1. Impact on terrestrial ecosystems and biodiversity. A review. Agronomy for Sustainable Development, 29: 409-421, DOI:10.1051/agro:2008066.
Gao Q, Guo Y, Xu H, et al., 2016. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci Total Environ, 554-555: 34-41, DOI:10.1016/j.scitotenv.2016.02.131.
Garrigues S, Olioso A, Calvet JC, et al., 2015. Evaluation of land surface model simulations of evapotranspiration over a 12-year crop succession: impact of soil hydraulic and vegetation properties. Hydrology and Earth System Sciences, 19(7): 3109-3131, DOI:10.5194/hess-19-3109-2015.
He S, Richards K, 2015. Impact of Meadow Degradation on Soil Water Status and Pasture Management-A Case Study in Tibet. Land Degradation & Development, 26(5): 468-479, DOI:10.1002/ldr.2358.
He Z, Zhao W, Liu H, et al., 2012. Effect of forest on annual water yield in the mountains of an arid inland river basin: a case study in the Pailugou catchment on northwestern China's Qilian Mountains. Hydrological Processes, 26(4): 613-621, DOI:10.1002/hyp.8162.
Immerzeel WW, Beek LPH, Bierkens MFP, 2010. Climate change will affect the Asian Water Towers. Science, 328(5984): 1382-1385, DOI:10.1126/science.1183188.
IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Field CB, Barros VR, Dokken DJ, et al. (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp.1132.
Jansson PE, 2012. Coupmodel: model use, calibration, and validation. Transactions of the ASABE, 55(4): 1335-1344.
Jansson PE, Moon DS, 2001. A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality. Environmental Modelling & Software, 16: 37-46.
Kalantari Z, Lyon SW, Jansson PE, et al., 2015. Modeller subjectivity and calibration impacts on hydrological model applications: an event-based comparison for a road-adjacent catchment in south-east Norway. Science of the Total Environment, 502: 315-329, DOI:10.1016/j.scitotenv.2014.09.030.
Kuang X, Jiao JJ, 2016. Review on climate change on the Tibetan Plateau during the last half century. Journal of Geophysical Research: Atmospheres, 121: 3979-4007, DOI:10.1002/2015JD024728.
Langston G, Bentley LR, Hayashi M, et al., 2011. Internal structure and hydrological functions of an alpine proglacial moraine. Hydrological Processes, 25: 2967-2982, DOI:10.1002/hyp.8144.
Lenoir J, Gégout JC, Marquet PA, et al., 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884): 1768-1771, DOI:10.1126/science.1156831.
Li J, Jiang S, Wang B, et al., 2013. Evapotranspiration and its energy exchange in Alpine meadow ecosystem on the Qinghai-Tibetan Plateau. Journal of Integrative Agriculture, 12(8): 1396-1401, DOI:10.1016/s2095-3119(13)60546-8.
Li Q, Sun S, Xue Y, 2010. Analyses and development of a hierarchy of frozen soil models for cold region study. Journal of Geophysical Research, 115: D03107, DOI:10.1029/2009jd012530.
Li XY, Liu LY, Gao SY, et al., 2008. Stemflow in three shrubs and its effect on soil water enhancement in semiarid loess region of China. Agricultural and Forest Meteorology, 148(10): 1501-1507, DOI:10.1016/j.agrformet.2008.05.003.
Ma R, Sun Z, Hu Y, et al., 2017. Hydrological connectivity from glaciers to rivers in the Qinghai-Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater. Hydrology and Earth System Sciences, 21: 4803-4823, DOI:10.5194/hess-21-4803-2017.
Mountain Research Initiative EDW Working Group, 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5(5): 424-430, DOI:10.1038/nclimate2563.
Mölg T, Maussion F, Scherer D, 2013. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nature Climate Change, 4(1): 68-73, DOI:10.1038/nclimate2055.
Negm A, Falocchi M, Barontini S, et al., 2013. Assessment of the water balance in an Alpine climate: Setup of a micrometeorological station and preliminary results. Procedia Environmental Sciences, 19: 275-284, DOI:10.1016/j.proenv.2013.06.032.
Okkonen J, Kløve B, 2011. A sequential modelling approach to assess groundwater-surface water resources in a snow dominated region of Finland. Journal of Hydrology, 411(1-2): 91-107, DOI:10.1016/j.jhydrol.2011.09.038.
Pang G, Wang X, Yang M, 2016. Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012. Quaternary International, 444: 87-96, DOI:10.1016/j.quaint.2016.08.038.
Pearson RG, Phillips SJ, Loranty MM, et al., 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change, 3(7): 673-677, DOI:10.1038/nclimate1858.
Reinfelds I, Swanson E, Cohen T, et al., 2014. Hydrospatial assessment of streamflow yields and effects of climate change: Snowy Mountains, Australia. Journal of Hydrology, 512: 206-220, DOI:10.1016/j.jhydrol.2014.02.038.
Rempel AW, 2012. Hydromechanical processes in freezing soils. Vadose Zone Journal, 11: 4, DOI:10.2136/vzj2012.0045.
Salzmann N, Machguth H, Linsbauer A, 2012. The Swiss Alpine glaciers' response to the global ‘2?℃ air temperature target’. Environmental Research Letters, 7(4): 044001, DOI:10.1088/1748-9326/7/4/044001.
Scherler M, Hauck C, Hoelzle M, et al., 2013. Modeled sensitivity of two alpine permafrost sites to RCM-based climate scenarios. Journal of Geophysical Research: Earth Surface, 118(2): 780-794, DOI:10.1002/jgrf.20069.
Screen JA, 2014. Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nature Climate Change, 4(7): 577-582, DOI:10.1038/nclimate2268.
Senay GB, Leake S, Nagler PL, et al., 2011. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods. Hydrological Processes, 25(26): 4037-4049, DOI:10.1002/hyp.8379.
Serreze MC, Barrett AP, Stroeve JC, et al., 2009. The emergence of surface-based Arctic amplification. The Cryosphere, 3: 11-19, DOI:10.5194/tc-3-11-2009.
Shen W, Zou C, Liu D, et al., 2015. Climate-forced ecological changes over the Tibetan Plateau. Cold Regions Science and Technology, 114: 27-35, DOI:10.1016/j.coldregions.2015.02.011.
Shi X, Mao J, Thornton PE, et al., 2013. Spatiotemporal patterns of evapotranspiration in response to multiple environmental factors simulated by the Community Land Model. Environmental Research Letters, 8(2): 024012, DOI:10.1088/1748-9326/8/2/024012.
Su F, Zhang L, Ou T, et al., 2016. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Global and Planetary Change, 136: 82-95, DOI:10.1016/j.gloplacha.2015.10.012.
Viviroli D, Archer D, Buytaert W, et al., 2011. Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrology and Earth System Sciences, 15(2): 471-504, DOI:10.5194/hess-15-471-2011.
Wang G, Bai W, Li N, et al., 2010. Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China. Climatic Change, 106(3): 463-482, DOI:10.1007/s10584-010-9952-0.
Wang Q, Fan X, Wang M, 2016. Evidence of high-elevation amplification versus Arctic amplification. Scientific Reports, 6: 19219, DOI:10.1038/srep19219.
Wang YL, Wang X, Zheng QY, et al., 2012. A comparative study on hourly real evapotranspiration and potential evapotranspiration during different vegetation growth stages in the Zoige Wetland. Procedia Environmental Sciences, 13: 1585-1594, DOI:10.1016/j.proenv.2012.01.150.
Weismüller J, Wollschläger U, Boike J, et al., 2011. Modeling the thermal dynamics of the active layer at two contrasting permafrost sites on Svalbard and on the Tibetan Plateau. The Cryosphere, 5(3): 741-757, DOI:10.5194/tc-5-741-2011.
Xu X, Lu C, Shi X, et al., 2008. World water tower: An atmospheric perspective. Geophysical Research Letters, 35(20): L20815, DOI:10.1029/2008gl035867.
Yin Y, Wu S, Zhao D, 2013. Past and future spatiotemporal changes in evapotranspiration and effective moisture on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 118(19): 10850-10860, DOI:10.1002/jgrd.50858.
Zhao D, Wu S, Yin Y, et al., 2011. Vegetation distribution on Tibetan Plateau under climate change scenario. Regional Environmental Change, 11(4): 905-915, DOI:10.1007/s10113-011-0228-7.
Zhao Y, Yu B, Yu G, et al., 2014. Study on the water-heat coupled phenomena in thawing frozen soil around a buried oil pipeline. Applied Thermal Engineering, 73(2): 1477-1488, DOI:10.1016/j.applthermaleng.2014.06.017.
Zhou J, Kinzelbach W, Cheng G, et al., 2013. Monitoring and modeling the influence of snow pack and organic soil on a permafrost active layer, Qinghai-Tibetan Plateau of China. Cold Regions Science and Technology, 90-91: 38-52, DOI:10.1016/j.coldregions.2013.03.003.
[1] MingTang Chai,YanHu Mu,GuoYu Li,Wei Ma,Fei Wang. Relationship between ponding and topographic factors along the China-Russia Crude Oil Pipeline in permafrost regions [J]. Sciences in Cold and Arid Regions, 2019, 11(6): 419-427.
[2] ShaoYing Wang, Yu Zhang, ShiHua Lyu, LunYu Shang, YouQi Su, HanHui Zhu. Radiation balance and the response of albedo to environmental factors above two alpine ecosystems in the eastern Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2017, 9(2): 142-157.
[3] XiuMing Liu, JiaSheng Chen. CO2 seasonal variation and global change: Test global warming from another point of view [J]. Sciences in Cold and Arid Regions, 2017, 9(1): 46-53.
[4] Wei Liu, ZongXing Li, Meng Zhu, XiaoYan Guo, LiJuan Chen. Temperature and precipitation changes in Extensive Hexi Region, China, 1960-2011 [J]. Sciences in Cold and Arid Regions, 2016, 8(3): 212-226.
[5] MaoShan Li, ZhongBo Su, YaoMing Ma, XueLong Chen, Lang Zhang, ZeYong Hu. Characteristics of land-atmosphere energy and turbulent fluxes over the plateau steppe in central Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2016, 8(2): 103-115.
[6] FuHui Jian, XiaoYu Song, LiLi Li, WenQi Gao. The evolution and enlightenment of water resources accounting from accounts to balance sheet [J]. Sciences in Cold and Arid Regions, 2016, 8(2): 156-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie,ShiMeng Wang,YiCheng Wang,ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang,YongQiu Wu,MeiHui Pan,RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao,ShiHua Lyu,ZhaoGuo Li,LiJuan Wen,Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga,Za Dui,Duodian Luozhu,Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang,JunQia Kong,ZeYu Du,YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu,ZhongKui Xie,XinPing Wang,YaJun Wang,YuBao Zhang,YuHui He,WenMei Li,WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei,XiaoFei Ma,PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] FangLei Zhong,AiJun Guo,XiaoJuan Yin,JinFeng Cui,Xiao Yang,YanQiong Zhang. Sociodemographic characteristics, cultural biases, and environmental attitudes: An empirical application of grid-group cultural theory in Northwestern China[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436 -446 .