Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (5): 450-462.doi: 10.3724/SP.J.1226.2021.21023.
Zhong Zhou(),HaoHui Ding,WenYuan Gao,LinRong Xu
Chen YD, Yu Y, Yu YX, 2013. Method for determining mesoscopic parameters of sand in three-dimensional particle flow code numerical modeling. Chinese Journal of Geotechnical Engineering, 35(S2): 88-93. (in Chinese) | |
Dong XH, Zhang AJ, Lian JB, et al., 2010. Laboratory study on shear strength deterioration of loess long-term freezing-thawing cycles. Journal of Engineering Geology, 18(6): 887-893. DOI: 10.3969/j.issn.1004-9665.2010.06.012.(in Chinese)
doi: 10.3969/j.issn.1004-9665.2010.06.012. |
|
Gao F, Xiong X, Xu CS, et al., 2021. Mechanical property deterioration characteristics and a new constitutive model for rocks subjected to freeze-thaw weathering process. International Journal of Rock Mechanics & Ming Sciences, 140: 104642. DOI: 10.1016/j.ijrmms.2021.104642.
doi: 10.1016/j.ijrmms.2021.104642 |
|
Guo WL, Zhu JG, Xu JC, et al., 2016. A method to determine the porosity and friction coefficient of coarse-grained soil in the model of PFC3D. Chinese Journal of Underground Space and Engineering, 12(S1): 157-162. (in Chinese) | |
Hu TF, Liu JK, Fang JH, et al., 2017. Experimental study on the effect of cyclic freezing-thawing on mechanical properties of silty clay with different degrees of compaction. Chinese Journal of Rock Mechanics and Engineering, 36(6): 1495-1503. DOI: 10.13722/j.cnki.jrme.2016.1051.(in Chinese)
doi: 10.13722/j.cnki.jrme.2016.1051. |
|
Han Y, Wang Q, Wang N, et al., 2018. Effect of freeze-thaw cycles on shear strength of saline soil. Cold Region Science and Technology, 154: 42-53. DOI: 10.1016/j.coldregions.2018.06.002.
doi: 10.1016/j.coldregions.2018.06.002 |
|
Kong QZ, Wang RL, Song GB, et al., 2014. Monitoring the soil freeze-thaw process using Piezoceramic-based smart aggregate. Journal of Cold Regions Engineering, 28(2): 06014001. DOI: 10.1061/(ASCE)CR.1943-5495.0000066.
doi: 10.1061/(ASCE)CR.1943-5495.0000066 |
|
Li Z, Liu SH, Wang LJ, et al., 2013. Experimental study on the mechanical properties of clayey soil under different freezing apparatus temperatures and freeze-thaw cycles. Scientia Iranica, Transactions A: Civil Engineering, 20(4): 1145-1152. | |
Li Z, Liu LL, Yan SH, et al., 2019. Effect of freeze-thaw cycles on mechanical and porosity properties of recycled construction waste mixtures. Construction and Building Materials, 210: 347-363. DOI: 10.1016/j.conbuildmat.2019.03.184.
doi: 10.1016/j.conbuildmat.2019.03.184 |
|
Ma T, Tang T, Huang XM, et al., 2016. Numerical analysis on thermal regime of wide embankment in permafrost regions of Qinghai-Tibet Plateau. Journal of Central South University, 23(12): 3346-3355. DOI: 10.1007/s11771-016-3400-x.
doi: 10.1007/s11771-016-3400-x |
|
Masrur M, Cetin B, Cetin KS, 2019. Freeze-thaw performance of phase change material (PCM) incorporated pavement subgrade soil. Construction and Building Materials, 202: 449-464. DOI: 10.1016/j.conbuildmat.2018.12.210.
doi: 10.1016/j.conbuildmat.2018.12.210 |
|
Ministry of Transport of the People's Republic of China, 2020. Test Methods of Soils for Highway Engineering: JTG 3430-2020. Beijing: Standards Press of China. (in Chinese) | |
Qi JL, Ma W, Song CX, 2008. Influence of freeze-thaw on engineering properties of a salty soil. Cold Regions Science and Technology, 53: 397-404. DOI: 10.1016/j.coldregions.2007.05.010.
doi: 10.1016/j.coldregions.2007.05.010 |
|
Shoop S, Affleck R, Haehnel R, et al., 2008. Mechanical behavior modeling of thaw-weakened soil. Cold Regions Science and Technology, 52: 191-206. DOI: 10.1016/j.coldregions.2007.04.023.
doi: 10.1016/j.coldregions.2007.04.023 |
|
Sun SR, Zhu F, Wei JH, et al., 2019. Experimental study on shear failure mechanism and the identification of strength characteristics of the soil-rock mixture. Shock and Vibration, 7450509. DOI: 10.1155/2019/7450509.
doi: 10.1155/2019/7450509 |
|
Viklander P, 1998. Permeability and volume changes in till due to cyclic freeze-thaw. Canadian Geotechnical Journal, 35(3): 471-477. DOI: 10.1139/t98-015.
doi: 10.1139/t98-015 |
|
Wang DY, Ma W, Chang XX, et al., 2005. Physical-mechanical properties changes of Qinghai-Tibet clay due to cyclic freezing and thawing. Chinese Journal of Rock Mechanics and Engineering, 24(23): 4313-4319. DOI: 10.3321/j.issn:1000-6915.2005.23.018. (in Chinese)
doi: 10.3321/j.issn:1000-6915.2005.23.018. |
|
Wang DY, Ma W, Niu YH, et al., 2007. Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay. Cold Regions Science and Technology, 48(1): 34-43. DOI: 10.1016/j.coldregions.2006.09.008.
doi: 10.1016/j.coldregions.2006.09.008 |
|
Wang TL, Liu JK, Tian YH, 2011. Static properties of cement and lime-modified soil subjected to freeze-thaw cycles. Rock and Soil Mechanics, 32(1): 193-198. DOI: 10.3969/j.issn.1000-7598.2011.01.031. (in Chinese)
doi: 10.3969/j.issn.1000-7598.2011.01.031. |
|
Wang TL, 2011. Study on dynamic and static properties of cement- and lime- modified fillings subjected to freezing and thawing. Beijing: Beijing Jiaotong University. (in Chinese) | |
Wei HZ, Xu WJ, Wei CF, et al., 2018. Influence of water content and shear rate on the mechanical behavior of soil-rock mixtures. Science china-technological sciences, 61(8): 1127-1136. DOI: 10.1007/s11431-017-9277-5.
doi: 10.1007/s11431-017-9277-5 |
|
Wang HL, Sha C, Xu WY, et al., 2019. Particle flow analysis of soil-rock mixture considering porosity and heterogeneity. Journal of Hohai University (Natural Sciences), 47(3): 251-258. DOI: 10.3876/j.issn.1000-1980.2019.03.010.(in Chinese)
doi: 10.3876/j.issn.1000-1980.2019.03.010. |
|
Xing K, Zhou Z, Yang H, et al., 2018. Macro-meso freeze-thaw damage mechanism of soil-rock mixtures with different rock contents. International Journal of Pavement Engineering, 21(1): 9-19. DOI: 10.1080/10298436.2018.1435879.
doi: 10.1080/10298436.2018.1435879 |
|
Xing HF, Liu LL, Luo Y, 2019. Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability. Geomechanics and engineering, 18(4): 353-362. DOI: 10.12989/gae.2019.18.4.353.
doi: 10.12989/gae.2019.18.4.353 |
|
Yan H, Liu JK, Wang TL, 2013. Experimental research of influences of freeze-thaw on the mechanical properties of silty soil. Journal of Beijing Jiaotong University, 37(4): 73-77. DOI: 10.11860/j.issn.1673-0291.2013.04.014. (in Chinese)
doi: 10.11860/j.issn.1673-0291.2013.04.014. |
|
Zheng X, Ma W, Bing H, 2015. Impact of freezing-thawing cycles on structure of soils and its mechanism analysis by laboratory testing. Rock and Soil Mechanics, 36(5): 1282-1294. DOI: 10.16285/j.rsm.2015.05.006. (in Chinese)
doi: 10.16285/j.rsm.2015.05.006. |
|
Zhou Z, Yang H, Wang XC, et al., 2016. Computational model for electrical resistivity of soil-rock mixtures. Journal of Materials in Civil Engineering, 28(8): 06016009. DOI: 10.1061/(ASCE)MT.1943-5533.0001559.
doi: 10.1061/(ASCE)MT.1943-5533.0001559 |
|
Zhou Z, Yang H, Wang XC, et al., 2017. Model development and experimental verification for permeability coefficient of soil-rock mixture. International Journal of Geomechanics, 17(4): 04016106. DOI: 10.1061/(ASCE)GM. 1943-5622.0000768.
doi: 10.1061/(ASCE)GM. 1943-5622.0000768 |
|
Zhou Z, Xing K, Yang H, et al., 2019. Damage mechanism of soil-rock mixture after freeze-thaw cycles. Journal of Central South University, 26(1):13-24. DOI: 10.1007/s11771-019-3979-9.
doi: 10.1007/s11771-019-3979-9 |
[1] | YanJun Shen,Huan Zhang,JinYuan Zhang,HongWei Yang,Xu Wang,Jia Pan. Sandstone-concrete interface transition zone (ITZ) damage and debonding micromechanisms under freeze-thaw [J]. Sciences in Cold and Arid Regions, 2021, 13(2): 133-149. |
[2] | Tao Wen,Sai Ying,FengXi Zhou. Calculation of salt-frost heave of sulfate saline soil due to long-term freeze-thaw cycles [J]. Sciences in Cold and Arid Regions, 2020, 12(5): 284-294. |
[3] | ShengYun Chen, Qian Zhao, WenJie Liu, Zhao Zhang, Shuo Li, HongLin Li, ZhongNan Nie, LingXi Zhou, ShiChang Kang. Effects of freeze-thaw cycles on soil N2O concentration and flux in the permafrost regions of the Qinghai-Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 69-79. |
[4] | Tuncer B. Edil, Bora Cetin, Ali Soleimanbeigi. Laboratory and field performance of recycled aggregate base in a seasonally cold region [J]. Sciences in Cold and Arid Regions, 2017, 9(3): 183-191. |
[5] | HongHuan Cui, YuTao Ma, JianKun Liu, ZhiYang Wang. Experimental study of the dynamic behavior of high-grade highway-subgrade soil in a seasonally frozen area [J]. Sciences in Cold and Arid Regions, 2017, 9(3): 289-296. |
[6] | QiuBo Yan, Feng Zhang, KangWei Tang, ShuJuan Wang, Yan Liu. Experimental investigation on static and dynamic resilient moduli of compacted fine soil [J]. Sciences in Cold and Arid Regions, 2017, 9(3): 297-306. |
[7] | ShengBo Xie, JianJun Qu, Tao Wang. Wind tunnel simulation of the effects of freeze-thaw cycles on soil erosion in the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2016, 8(3): 187-195. |
[8] | QianMi Yu, JianKun Liu, JingYu Liu, DingJun Lv, TengFei Wang. Experimental study of the effects of non-uniformly distributed fine soil on mechanical properties of Shenyang-Dandong Railway coarse-grained soil [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 503-512. |
[9] | ZhenYa Liu, JingYu Liu, QingZhi Wang, JianKun Liu. Compressive strength and frost heave resistance of different types of semi-rigid base materials after freeze-thaw cycles [J]. Sciences in Cold and Arid Regions, 2015, 7(4): 365-369. |
[10] | ChengYi Yu, Shuang Tian, Liang Tang, XianZhang Ling, GuoQing Zhou. Finite element analysis on deformation of highembankment in heavy-haul railway subjected to freeze-thaw cycles [J]. Sciences in Cold and Arid Regions, 2015, 7(4): 421-429. |
[11] | Ze Zhang, Vadim V. Pendin, WenJie Feng, ZhongQiong Zhang. The influence of freeze-thaw cycles on the granulometric composition of Moscow morainic clay [J]. Sciences in Cold and Arid Regions, 2015, 7(3): 199-205. |
|