Sciences in Cold and Arid Regions ›› 2018, Vol. 10 ›› Issue (5): 379–391.doi: 10.3724/SP.J.1226.2018.00379

• • 上一篇    下一篇

  

  • 收稿日期:2018-01-16 接受日期:2018-08-16 出版日期:2018-11-19 发布日期:2018-11-21
  • 基金资助:
    This research was supported by the National Natural Science Foundation of China (Nos. 91637107, 41605011, 41675020, 91537214 and 41775016), Sino-German Research Project (No. GZ1259), the Science and Technology Service Network Initiative of CAREERI, Chinese Academy of Sciences (No. 6516-71001).

Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau

YinHuan Ao1,ShiHua Lyu2,3,ZhaoGuo Li1,*(),LiJuan Wen1,Lin Zhao1   

  1. 1 Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-En-vironment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2 Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
    3 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China
  • Received:2018-01-16 Accepted:2018-08-16 Online:2018-11-19 Published:2018-11-21
  • Contact: ZhaoGuo Li E-mail:zgli@lzb.ac.cn
  • Supported by:
    This research was supported by the National Natural Science Foundation of China (Nos. 91637107, 41605011, 41675020, 91537214 and 41775016), Sino-German Research Project (No. GZ1259), the Science and Technology Service Network Initiative of CAREERI, Chinese Academy of Sciences (No. 6516-71001).

Abstract:

Lakes regulate the water and heat exchange between the ground and the atmosphere on different temporal and spatial scales. However, studies of the lake effect in the high-altitude Tibetan Plateau (TP) rarely have been performed until recently, and little attention has been paid to modelling of frozen lakes. In this study, the Weather Research and Forecasting Model (WRF v. 3.6.1) is employed to conduct three numerical experiments in the Ngoring Lake Basin (the original experiment, an experiment with a tuned model, and a no-lake experiment) to investigate the influences of parameter optimization on the lake simulation and of the high-altitude lake on the regional climate. After the lake depth, the roughness lengths, and initial surface temperature are corrected in the model, the simulation of the air temperature is distinctly improved. In the experiment using a tuned model, the simulated sensible-heat flux (H) is clearly improved, especially during periods of ice melting (from late spring to early summer) and freezing (late fall). The improvement of latent-heat flux (LE) is mainly manifested by the sharp increase in the correlation coefficient between simulation and observation, whereas the improvement in the average value is small. The optimization of initial surface temperature shows the most prominent effect in the first year and distinctly weakens after a freezing period. After the lakes become grassland in the model, the daytime temperature clearly increases during the freezing and melting periods; but the nocturnal cooling appears in other stages, especially from September to October. The annual mean H increases by 6.4 times in the regions of the Ngoring Lake and the Gyaring Lake, and the LE declines by 56.2%. The sum of H and LE increases from 71.2 W/m2 (with lake) to 84.6 W/m2 (no lake). For the entire simulation region, the sum of H and LE also increases slightly. After the lakes are removed, the air temperature increases significantly from June to September over the area corresponding to the two lakes, and an abnormal convergence field appears; at the same time, the precipitation clearly increases over the two lakes and surrounding areas.

Key words: Lake-surface temperature, roughness length, turbulent flux, Ngoring Lake, Tibetan Plateau

"

Grid domain Central coordinates Number of point grid Horizontal grid size (km) Time step (s)
1 97.4°E, 34.7°N 70×60 50 300
2 97.4°E, 34.7°N 81×71 10 60
3 97.4°E, 34.7°N 101×91 2 12

"

"

"

"

Observation Case 1 Case 2
Simulation Correlation RMSE Simulation Correlation RMSE
Lake Temperature ?0.13 ?1.09 0.97 2.25 ?0.83 0.97 2.33
Wind speed 4.51 4.73 0.32 1.40 4.84 0.32 1.37
Madoi Temperature ?0.19 ?1.59 0.98 2.09 ?1.54 0.98 2.09
Wind speed 2.75 4.67 0.20 1.34 4.65 0.19 1.36

"

"

"

"

"

"

"

1 Balsamo G, Salgado R, Dutra E, et al. On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model. Tellus A: Dynamic Meteorology and Oceanography 2012; 64: 1 15829.
doi: 10.3402/tellusa.v64i0.15829
2 Bates GT, Giorgi F, Hostetler SW Toward the simulation of the effects of the Great Lakes on regional climate. Monthly Weather Review 1993; 121: 5 1373- 1387.
doi: 10.1175/1520-0493(1993)121<1373:TTSOTE>2.0.CO;2
3 Biermann T, Babel W, Ma WQ, et al. Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co Basin, Tibetan Plateau. Theoretical and Applied Climatology 2014; 116: 1–2 301- 316.
doi: 10.1007/s00704-013-0953-6
4 Chen F, Dudhia J Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Monthly Weather Review 2001; 129: 4 569- 585.
doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
5 Clough SA, Shephard MW, Mlawer EJ, et al. Atmospheric radiative transfer modeling: a summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer 2005; 91: 2 233- 244.
doi: 10.1016/j.jqsrt.2004.05.058
6 Downing JA Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 2010; 29: 1 9- 24.
7 Dutra E, Stepanenko VM, Balsamo G, et al. An offline study of the impact of lakes on the performance of the ECMWF surface scheme. Boreal Environment Research 2010; 15: 2 100- 112.
8 Eerola K, Rontu L, Kourzeneva E, et al. A study on effects of lake temperature and ice cover in HIRLAM. Boreal Environment Research 2010; 15: 2 130- 142.
9 Ellis AW, Leathers DJ A synoptic climatological approach to the analysis of lake-effect snowfall: potential forecasting applications. Weather and Forecasting 1996; 11: 2 216- 229.
doi: 10.1175/1520-0434(1996)011<0216:ASCATT>2.0.CO;2
10 Gerbush MR, Kristovich DAR, Laird NF Mesoscale boundary layer and heat flux variations over pack ice–covered lake Erie. Journal of Applied Meteorology and Climatology 2008; 47: 2 668- 682.
doi: 10.1175/2007JAMC1479.1
11 Grachev AA, Bariteau L, Fairall CW, et al. Turbulent fluxes and transfer of trace gases from ship-based measurements during TexAQS 2006. Journal of Geophysical Research: Atmospheres 2011; 116: D13 D13110.
doi: 10.1029/2010JD015502
12 Gu HP, Jin JM, Wu YH, et al. Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model. Climatic Change 2015; 129: 3–4 471- 483.
doi: 10.1007/s10584-013-0978-y
13 Hondzo M, Stefan HG Regional water temperature characteristics of lakes subjected to climate change. Climatic Change 1993; 24: 3 187- 211.
doi: 10.1007/BF01091829
14 Hong SY, Lim JOJ The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society 2006; 42: 2 129- 151.
15 Huang WF, Han HW, Shi LQ, et al. Effective thermal conductivity of thermokarst lake ice in Beiluhe Basin, Qinghai-Tibet Plateau. Cold Regions Science and Technology 2013; 85: 34- 41.
doi: 10.1016/j.coldregions.2012.08.001
16 Huang WF, Li RL, Han HW, et al. Ice processes and surface ablation in a shallow thermokarst lake in the central Qinghai–Tibetan Plateau. Annals of Glaciology 2016; 57: 71 20- 28.
doi: 10.3189/2016AoG71A016
17 Jeffries MO, Zhang TJ, Frey K, et al. Estimating late-winter heat flow to the atmosphere from the lake-dominated Alaskan North Slope. Journal of Glaciology 1999; 45: 150 315- 324.
doi: 10.3189/S0022143000001817
18 Kain JS The Kain–Fritsch convective parameterization: an update and climatology. Journal of Applied Meteorology 2004; 43: 1 170- 181.
doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
19 Kristovich DAR, Braham Jr RR Mean profiles of moisture fluxes in snow-filled boundary layers. Boundary-Layer Meteorology 1998; 87: 2 195- 215.
doi: 10.1023/A:1000836401204
20 Kristovich DAR, Laird NF Observations of widespread lake-effect cloudiness: influences of lake surface temperature and upwind conditions. Weather and Forecasting 1998; 13: 3 811- 821.
doi: 10.1175/1520-0434(1998)013<0811:OOWLEC>2.0.CO;2
21 Lavoie RL A mesoscale numerical model of lake-effect storms. Journal of the Atmospheric Sciences 1972; 29: 6 1025- 1040.
doi: 10.1175/1520-0469(1972)029<1025:AMNMOL>2.0.CO;2
22 Le Moigne P, Colin J, Decharme B Impact of lake surface temperatures simulated by the FLake scheme in the CNRM-CM5 climate model. Tellus A: Dynamic Meteorology and Oceanography 2016; 68: 1 31274.
doi: 10.3402/tellusa.v68.31274
23 Li XL, Pu ZX Sensitivity of numerical simulations of the early rapid intensification of Hurricane Emily to cumulus parameterization schemes in different model horizontal resolutions. Journal of the Meteorological Society of Japan 2009; 87: 3 403- 421.
doi: 10.2151/jmsj.87.403
24 Li ZG, Lyu S, Ao Y, et al. Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau. Atmospheric Research 2015; 155: 13- 25.
doi: 10.1016/j.atmosres.2014.11.019
25 Li ZG, Lyu S, Zhao L, et al. Turbulent transfer coefficient and roughness length in a high-altitude lake, Tibetan Plateau. Theoretical and Applied Climatology 2016; 124: 3–4 723- 735.
doi: 10.1007/s00704-015-1440-z
26 Li ZG, Lyu S, Wen LJ, et al. Effect of a cold, dry air incursion on atmospheric boundary layer processes over a high-altitude lake in the Tibetan Plateau. Atmospheric Research 2017; 185: 32- 43.
doi: 10.1016/j.atmosres.2016.10.024
27 Li ZG, Lyu S, Wen LJ, et al. Effect of roughness lengths on surface energy and the planetary boundary layer height over high-altitude Ngoring Lake. Theoretical and Applied Climatology 2018; 133: 3–4 1191- 1205.
doi: 10.1007/s00704-017-2258-7
28 Lofgren BM Simulated effects of idealized laurentian Great Lakes onregional and large-scale climate. Journal of Climate 1997; 10: 11 2847- 2858.
doi: 10.1175/1520-0442(1997)010<2847:SEOILG>2.0.CO;2
29 Lofgren BM A model for simulation of the climate and hydrology of the Great Lakes basin. Journal of Geophysical Research: Atmospheres 2004; 109: D18 D18108.
doi: 10.1029/2004JD004602
30 Long Z, Perrie W, Gyakum J, et al. Northern lake impacts on local seasonal climate. Journal of Hydrometeorology 2007; 8: 4 881- 896.
doi: 10.1175/JHM591.1
31 Mahrt L, Vickers D, Frederickson P, et al. Sea-surface aerodynamic roughness. Journal of Geophysical Research: Oceans 2003; 108: C6 3171.
doi: 10.1029/2002JC001383
32 Maussion F, Scherer D, Finkelnburg R, et al. WRF simulation of a precipitation event over the Tibetan Plateau, China—an assessment using remote sensing and ground observations. Hydrology and Earth System Sciences 2011; 15: 6 1795- 1817.
doi: 10.5194/hess-15-1795-2011
33 Nasrollahi N, AghaKouchak A, Li JL, et al. Assessing the impacts of different WRF precipitation physics in hurricane simulations. Weather and Forecasting 2012; 27: 4 1003- 1016.
doi: 10.1175/WAF-D-10-05000.1
34 Niziol TA, Snyder WR, Waldstreicher JS Winter weather forecasting throughout the eastern United States. Part IV: lake effect snow. Weather and Forecasting 1995; 10: 1 61- 77.
doi: 10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2
35 Norton DC, Bolsenga SJ Spatiotemporal trends in lake effect and continental snowfall in the Laurentian Great Lakes, 1951–1980. Journal of Climate 1993; 6: 10 1943- 1956.
doi: 10.1175/1520-0442(1993)006<1943:STILEA>2.0.CO;2
36 Oleson KW, Lawrence DM, Bonan GB, et al., 2013. Technical description of version 4.5 of the community land model (CLM). NCAR Technical Note NCAR/TN-503+STR. Boulder, Colorado, USA: NCAR, pp. 205–206. DOI: 10.5065/D6RR1W7M.
37 Pleim JE A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: model description and testing. Journal of Applied Meteorology and Climatology 2007; 46: 9 1383- 1395.
doi: 10.1175/JAM2539.1
38 Read JS, Hamilton DP, Desai AR, et al. Lake-size dependency of wind shear and convection as controls on gas exchange. Geophysical Research Letters 2012; 39: 9 L09405.
doi: 10.1029/2012GL051886
39 Rouse WR, Oswald CJ, Binyamin J, et al. The role of northern lakes in a regional energy balance. Journal of Hydrometeorology 2005; 6: 3 291- 305.
doi: 10.1175/JHM421.1
40 Samuelsson P, Kourzeneva E, Mironov D The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environment Research 2010; 15: 2 113- 129.
41 Skamarock WC, Klemp JB, Dudhia J, et al., 2005. A description of the advanced research WRF version 2. NCAR Technical Note NCAR/TN-468+STR. Boulder, Colorado, USA: NCAR.
42 Song CQ, Huang B, Richards K, et al. Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes?. Water Resources Research 2014; 50: 4 3170- 3186.
doi: 10.1002/2013WR014724
43 Subin ZM, Riley WJ, Mironov D An improved lake model for climate simulations: model structure, evaluation, and sensitivity analyses in CESM1. Journal of Advances in Modeling Earth Systems 2012; 4: 1 M02001.
doi: 10.1029/2011MS000072
44 Torbick N, Ziniti B, Wu S, et al. Spatiotemporal lake skin summer temperature trends in the northeast United States. Earth Interactions 2016; 20: 25 1- 21.
doi: 10.1175/EI-D-16-0015.1
45 Vachon D, Prairie YT The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes. Canadian Journal of Fisheries and Aquatic Sciences 2013; 70: 12 1757- 1764.
doi: 10.1139/cjfas-2013-0241
46 Vickers D, Mahrt L Sea-surface roughness lengths in the midlatitude coastal zone. Quarterly Journal of the Royal Meteorological Society 2010; 136: 649 1089- 1093.
doi: 10.1002/qj.617
47 Wan W, Long D, Hong Y, et al. A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014. Scientific Data 2016; 3: 160039.
doi: 10.1038/sdata.2016.39
48 Wang BB, Ma YM, Ma WQ, et al. Physical controls on half-hourly, daily, and monthly turbulent flux and energy budget over a high—altitude small lake on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres 2017; 122: 4 2289- 2303.
doi: 10.1002/2016JD026109
49 Wei ZW, Miyano A, Sugita M Drag and bulk transfer coefficients over water surfaces in light winds. Boundary-Layer Meteorology 2016; 160: 2 319- 346.
doi: 10.1007/s10546-016-0147-8
50 Wen LJ, Lv SH, Li ZG, et al. Impacts of the two biggest lakes on local temperature and precipitation in the Yellow River source region of the Tibetan Plateau. Advances in Meteorology 2015; 2015: 248031.
doi: 10.1155/2015/248031
51 Wilson JW Effect of Lake Ontario on precipitation. Monthly Weather Review 1977; 105: 2 207- 214.
doi: 10.1175/1520-0493(1977)105<0207:EOLOOP>2.0.CO;2
52 Woolway RI, Jones ID, Hamilton DP, et al. Automated calculation of surface energy fluxes with high-frequency lake buoy data. Environmental Modelling & Software 2015; 70: 191- 198.
doi: 10.1016/j.envsoft.2015.04.013
53 Woolway RI, Jones ID, Maberly SC, et al. Diel surface temperature range scales with lake size. PLoS One 2016; 11: 3 e0152466.
doi: 10.1371/journal.pone.0152466
54 Woolway RI, Verburg P, Merchant CJ, et al. Latitude and lake size are important predictors of over-lake atmospheric stability. Geophysical Research Letters 2017; 44: 17 8875- 8883.
doi: 10.1002/2017GL073941
55 Wright DM, Posselt DJ, Steiner AL Sensitivity of lake-effect snowfall to lake ice cover and temperature in the great lakes region. Monthly Weather Review 2013; 141: 2 670- 689.
doi: 10.1175/MWR-D-12-00038.1
56 Xu LJ, Liu HZ, Du Q, et al. Evaluation of the WRF-lake model over a highland freshwater lake in southwest China. Journal of Geophysical Research: Atmospheres 2016; 121: 23 13989- 14005.
doi: 10.1002/2016JD025396
57 Yang K, Lu H, Yue SY, et al. Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau. Climatic Change 2018; 147: 1–2 149- 163.
doi: 10.1007/s10584-017-2127-5
58 Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Global and Planetary Change 2014; 112: 79- 91.
doi: 10.1016/j.gloplacha.2013.12.001
59 Yao JM, Zhao L, Gu LL, et al. The surface energy budget in the permafrost region of the Tibetan Plateau. Atmospheric Research 2011; 102: 4 394- 407.
doi: 10.1016/j.atmosres.2011.09.001
60 Ye QH, Wei QF, Hochschild V, et al., 2011. Integrated observations of lake ice at Nam Co on the Tibetan Plateau from 2001 to 2009. In: Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium. Vancouver, BC, Canada: IEEE, pp. 3217–3220. DOI: 10.1109/IGARSS.2011.6049904.
61 Zhang GQ, Yao TD, Xie HJ, et al. Increased mass over the Tibetan Plateau: from lakes or glaciers?. Geophysical Research Letters 2013; 40: 10 2125- 2130.
doi: 10.1002/grl.50462
62 Zhang Q Study on depth of atmospheric thermal boundary layer in extreme arid desert regions. Journal of Desert Research 2007; 27: 4 614- 620.
doi: 10.3321/j.issn:1000-694X.2007.04.015
63 Zhao L, Jin JM, Wang SY, et al. Integration of remote-sensing data with WRF to improve lake-effect precipitation simulations over the Great Lakes region. Journal of Geophysical Research: Atmospheres 2012; 117: D9 D09102.
doi: 10.1029/2011JD016979
64 Zilitinkevich SS, Grachev AA, Fairall CW Notes and correspondecescaling reasoning and field data on the sea surface roughness lengths for scalars. Journal of the Atmospheric Sciences 2001; 58: 3 320- 325.
doi: 10.1175/1520-0469(2001)058<0320:NACRAF>2.0.CO;2
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[5] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[6] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[7] . [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[8] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[9] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436 -446 .
[10] . [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .