Sciences in Cold and Arid Regions ›› 2018, Vol. 10 ›› Issue (1): 80–94.doi: 10.3724/SP.J.1226.2018.00080

• • 上一篇    

An improvement of soil temperature simulations on the Tibetan Plateau

SiQiong Luo1, BoLi Chen2, ShiHua Lyu3,4, XueWei Fang3, JingYuan Wang1, XianHong Meng1, LunYu Shang1, ShaoYing Wang1, Di Ma1   

  1. 1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China;
    2. Changzhou Meteorological Bureau, Changzhou, Jiangsu 213000, China;
    3. School of Atmospheric Sciences, Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China;
    4. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
  • 收稿日期:2017-06-04 出版日期:2018-02-01 发布日期:2018-11-23
  • 通讯作者: SiQiong Luo, lsq@lzb.ac.cn E-mail:lsq@lzb.ac.cn
  • 基金资助:
    This work is supported by the National Natural Science Foundation of China (91537104, 41375077, 41775016, 41405015, and 41405016). The authors also acknowledge all the participants for their very hard fieldwork during the observations at the Zoige Plateau Wetlands Ecosystem Research Station and the support for using the computing resources at the Supercomputing Center of Northwest Institute of EcoEnvironment and Resources, Chinese Academy of Sciences.

An improvement of soil temperature simulations on the Tibetan Plateau

SiQiong Luo1, BoLi Chen2, ShiHua Lyu3,4, XueWei Fang3, JingYuan Wang1, XianHong Meng1, LunYu Shang1, ShaoYing Wang1, Di Ma1   

  1. 1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China;
    2. Changzhou Meteorological Bureau, Changzhou, Jiangsu 213000, China;
    3. School of Atmospheric Sciences, Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China;
    4. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
  • Received:2017-06-04 Online:2018-02-01 Published:2018-11-23
  • Contact: SiQiong Luo, lsq@lzb.ac.cn E-mail:lsq@lzb.ac.cn
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (91537104, 41375077, 41775016, 41405015, and 41405016). The authors also acknowledge all the participants for their very hard fieldwork during the observations at the Zoige Plateau Wetlands Ecosystem Research Station and the support for using the computing resources at the Supercomputing Center of Northwest Institute of EcoEnvironment and Resources, Chinese Academy of Sciences.

摘要: The simulation of soil temperature on the Tibetan Plateau (TP) plays a dominant role in the performance of both global climate and numerical weather forecast models. To improve the simulation of soil temperature on the TP, the Johansen soil thermal conductivity parameterization scheme was introduced into Community Land Model 3.5 (CLM3.5) and Regional Climatic Model 4 (RegCM4). The improved CLM3.5 and RegCM4-CLM were utilized to conduct offline and regional simulation experiments on the TP. Comparison of the new and old schemes revealed that CLM3.5 provides high thermal conductivity parameters of mineral soil solid on the TP. The Johansen scheme is more practical for the TP than the soil thermal conductivity parameterization in CLM3.5. The simulation of soil temperature and liquid water content was improved in offline experiment. The improved parameterization scheme can also reduce the simulation error of soil temperature in winter throughout the entire TP.

关键词: soil temperature, soil thermal conductivity parameterization scheme, Tibetan Plateau, CLM3.5, RegCM4

Abstract: The simulation of soil temperature on the Tibetan Plateau (TP) plays a dominant role in the performance of both global climate and numerical weather forecast models. To improve the simulation of soil temperature on the TP, the Johansen soil thermal conductivity parameterization scheme was introduced into Community Land Model 3.5 (CLM3.5) and Regional Climatic Model 4 (RegCM4). The improved CLM3.5 and RegCM4-CLM were utilized to conduct offline and regional simulation experiments on the TP. Comparison of the new and old schemes revealed that CLM3.5 provides high thermal conductivity parameters of mineral soil solid on the TP. The Johansen scheme is more practical for the TP than the soil thermal conductivity parameterization in CLM3.5. The simulation of soil temperature and liquid water content was improved in offline experiment. The improved parameterization scheme can also reduce the simulation error of soil temperature in winter throughout the entire TP.

Key words: soil temperature, soil thermal conductivity parameterization scheme, Tibetan Plateau, CLM3.5, RegCM4

Avissar R, Pielke RA, 1989. A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Monthly Weather Review, 117(10): 2113-2136, DOI:10.1175/1520-0493(1989)117.
Bhattacharya A, Mandal M, 2015. Evaluation of Noah land-surface models in predicting soil temperature and moisture at two tropical sites in India. Meteorological Applications, 22(3): 505-512, DOI:10.1002/met.1481.
Chen BL, Lü SH, Luo SQ, 2012a. Simulation analysis on land surface process at Maqu station in the Qinghai-Xizang Plateau using community land model. Plateau Meteorology, 31(6): 1511-1522.
Chen BL, Luo SQ, Lü SH, et al., 2014a. Validation and comparison of the simulation at Zoigê Station during freezing and thawing with land surface model CLM. Climatic and Environmental Research, 19(5): 649-658, DOI:10.3878/j.issn.1006-9585.2014.13013.
Chen BL, Luo SQ, Lü SH, et al., 2014b. Effects of the soil freeze-thaw process on the regional climate of the Qinghai-Tibet Plateau. Climate Research, 59(3): 243-257, DOI:10.3354/cr01217.
Chen YY, Yang K, Tang WJ, et al., 2012b. Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands. Science China Earth Sciences, 55(6): 1001-1011, DOI:10.1007/s11430-012-4433-0.
Côté J, Konrad JM, 2005a. Thermal conductivity of base-course materials. Canadian Geotechnical Journal, 42(1): 61-78, DOI:10.1139/t04-081.
Côté J, Konrad JM, 2005b. A generalized thermal conductivity model for soils and construction materials. Canadian Geotechnical Journal, 42(2): 443-458, DOI:10.1139/t04-106.
Elguindi N, Bi XQ, Giorgi F, et al., 2011. Regional climatic model RegCM user manual version 4.1. Trieste, Italy: International Centre for Theoretical Physics.
Fang XW, Luo SQ, Lyu SH, et al., 2016. A simulation and validation of CLM during freeze-thaw on the Tibetan Plateau. Advances in Meteorology, 2016: 9476098, DOI:10.1155/2016/9476098.
Farouki OT, 1981. The thermal properties of soils in cold regions. Cold Regions Science and Technology, 5(1): 67-75, DOI:10.1016/0165-232X(81)90041-0.
Farouki OT, 1986. Thermal Properties of Soils. Clausthal-Zellerteld: Trans Tech Publication, pp. 12-28.
Findell KL, Pitman AJ, England MH, et al., 2009. Regional and global impacts of land cover change and sea surface temperature anomalies. Journal of Climate, 22(12): 3248-3269, DOI:10.1175/2008JCLI2580.1.
Gao XJ, Xu Y, Zhao ZC, et al., 2006. Impacts of horizontal resolution and topography on the numerical simulation of East Asian precipitation. Chinese Journal of Atmospheric Sciences, 30(2): 185-192, DOI:10.3878/j.issn.1006-9895.2006.02.01.
Gao ZQ, 2005. Determination of soil heat flux in a tibetan short-grass prairie. Boundary-Layer Meteorology, 114(1): 165-178, DOI:10.1007/s10546-004-8661-5.
Gao ZQ, Fan XG, Bian LG, 2003. An analytical solution to one-dimensional thermal conduction-convection in soil. Soil Science, 168(2): 99-107, DOI:10.1097/00010694-200302000-00004.
Giorgi F, Elguindi N, 2011. Regional climatic model RegCM User's guide version 4.2. Trieste, Italy: International Centre for Theoretical Physics.
Johansen O, 1975. Thermal Conductivity of Soils. Trondheim, Norway: University of Trondheim, pp. 236.
Koren V, Schaake J, Mitchell K, et al., 1999. A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. Journal of Geophysical Research: Atmospheres, 104(D16): 19569-19585, DOI:10.1029/1999JD900232.
Lawrence DM, Slater AG, 2008. Incorporating organic soil into a global climate model. Climate Dynamics, 30(2-3): 145-160, DOI:10.1007/s00382-007-0278-1.
Lawrence PJ, Chase TN, 2007. Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). Journal of Geophysical Research: Biogeosciences, 112(G1): G01023, DOI:10.1029/2006JG000168.
Liang L, Li YQ, Hu HR, et al., 2009. Simulation of air temperature and precipitation over Qinghai-Xizang Plateau with RegCM3 model. Scientia Meteorologica Sinica, 29(5): 611-617, DOI:10.3969/j.issn.1009-0827.2009.05.007.
Liu XD, Chen BD, 2000. Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20(14): 1729-1742, DOI:10.1002/1097-0088(20001130)20:14.
Lu S, Ren TS, Gong YS, et al., 2007. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Science Society of America Journal, 71(1): 8-14, DOI:10.2136/sssaj2006.0041.
Luo SQ, Lü SH, Zhang Y, 2009a. Development and validation of the frozen soil parameterization scheme in Common Land Model. Cold Regions Science and Technology, 55(1): 130-140, DOI:10.1016/j.coldregions.2008.07.009.
Luo SQ, Lü SH, Zhang Y, et al., 2008. Simulation analysis on land surface process of BJ site of central Tibetan Plateau using CoLM. Plateau Meteorology, 27(2): 259-271.
Luo SQ, Lü SH, Zhang Y, et al., 2009b. Soil thermal conductivity parameterization establishment and application in numerical model of central Tibetan Plateau. Chinese Journal of Geophysics, 52(4): 919-928, DOI:10.3969/j.issn.0001-5733.2009.04.008.
Manabe S, Broccoli AJ, 1990. Mountains and arid climates of middle latitudes. Science, 247(4939): 192-195, DOI:10.1126/science.247.4939.192.
Niu GY, Yang ZL, 2006. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. Journal of Hydrometeorology, 7(5): 937-952, DOI:10.1175/JHM538.1.
Niu GY, Yang ZL, Dickinson RE, et al., 2005. A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. Journal of Geophysical Research: Atmospheres, 110(D21), DOI:10.1029/2005JD006111.
Niu GY, Yang ZL, Dickinson RE, et al., 2007. Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. Journal of Geophysical Research: Atmospheres, 112(D7), DOI:10.1029/2006JD007522.
Oleson KW, Dai YJ, Bonan G, et al., 2004. Technical description of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-461+STR. DOI: 10.5065/D6N877R0.
Overduin PP, Kane DL, van Loon WKP, 2006. Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating. Cold Regions Science and Technology, 45(1): 8-22, DOI:10.1016/j.coldregions.2005.12.003.
Peter-Lidard CD, Blackburn E, Liang X, et al., 1998. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. Journal of the Atmospheric Sciences, 55(7): 1209-1224, DOI:10.1175/1520-0469(1998)055.
Qu P, Yang MX, Guo DL, et al., 2009. Simulation of summer air temperature and precipitation over Tibetan Plateau with regional climate model (RegCM3). Plateau Meteorology, 28(4): 738-744.
Thornton PE, Zimmermann NE, 2007. An improved canopy integration scheme for a land surface model with prognostic canopy structure. Journal of Climate, 20(15): 3902-3923, DOI:10.1175/JCLI4222.1.
Vertenstein M, Oleson KW, Levis S, et al., 2004. Community land model version 3.0 (CLM3.0) user's guide. Boulder, CO: National Center for Atmospheric Research.
Xiong JS, Zhang Y, Wang SY, et al., 2014. Influence of soil moisture transmission scheme improvement in CLM4.0 on simulation of land surface process in Qinghai-Xizang Plateau. Plateau Meteorology, 33(2): 323-336, DOI:10.7522/j.issn.1000-0534.2014.00012.
Yang K, Koike T, Ye BS, et al., 2005. Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition. Journal of Geophysical Research: Atmospheres, 110(D8), DOI:10.1029/2004JD005500.
Ye DZ, Gao YX, 1979. Meteorology of the Qinghai-Xizang (Tibet) Plateau. Beijing: Science Press.
Yoshikawa K, Bolton WR, Romanovsky VE, et al., 2002. Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska. Journal of Geophysical Research: Atmospheres, 107(D1), DOI:10.1029/2001jd000438.
Zhang DF, Gao XJ, Bai HZ, et al., 2005. Simulation of climate over Qinghai-Xizang Plateau utilizing RegCM3. Plateau Meteorology, 24(5): 714-720, DOI:10.3321/j.issn:1000-0534.2005.05.009.
Zhou JW, Wang YQ, 2007. The advance in application and research of regional climate model RegCM3. Scientia Meteorologica Sinica, 27(6): 702-708, DOI:10.3969/j.issn.1009-0827.2007.06.018.
Sun SF, 2005. Physical, Biochemical Mechanism and Parametric Model of Land Surface Processes. Beijing: Meteorological Press, pp. 84.
[1] HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China[J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207-218.
[2] ZhenMing Wu, Lin Zhao, Lin Liu, Rui Zhu, ZeShen Gao, YongPing Qiao, LiMing Tian, HuaYun Zhou, MeiZhen Xie. Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data[J]. Sciences in Cold and Arid Regions, 2018, 10(2): 114-125.
[3] BenLi Liu, JianJun Qu, ShiChang Kang, Bing Liu. Climate change inferred from aeolian sediments in a lake shore environment in the central Tibetan Plateau during recent centuries[J]. Sciences in Cold and Arid Regions, 2018, 10(2): 134-144.
[4] YueFang Li, Zhen Li, Ju Huang, Giulio Cozzi, Clara Turetta, Carlo Barbante, LongFei Xiong. Variations of trace elements and rare earth elements (REEs) treated by two different methods for snow-pit samples on the Qinghai-Tibetan Plateau and their implications[J]. Sciences in Cold and Arid Regions, 2017, 9(6): 568-579.
[5] ShaoYing Wang, Yu Zhang, ShiHua Lyu, LunYu Shang, YouQi Su, HanHui Zhu. Radiation balance and the response of albedo to environmental factors above two alpine ecosystems in the eastern Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2017, 9(2): 142-157.
[6] LunYu Shang, Yu Zhang, ShiHua Lyu, ShaoYing Wang, YinHuan Ao, SiQiong Luo, ShiQiang Chen. Winter estimation of surface roughness length over eastern Qinghai-Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2017, 9(2): 151-157.
[7] Zhuo Ga, Tao Chen, La Ba, PuBuCiRen, Ba Sang. Distribution of winter-spring snow over the Tibetan Plateau and its relationship with summer precipitation in Yangtze River[J]. Sciences in Cold and Arid Regions, 2017, 9(1): 20-28.
[8] ZhiCai Li, Yan Song, Wei Zhang, Jing Zhang, ZiNiu Xiao. Interdecadal correlation of solar activity with Tibetan Plateau snow depth and winter atmospheric circulation in East Asia[J]. Sciences in Cold and Arid Regions, 2016, 8(6): 524-535.
[9] WenTao Du, ShiChang Kang, Xiang Qin, XiaoQing Cui, WeiJun Sun. Atmospheric insight to climatic signals of δ18O in a Laohugou ice core in the northeastern Tibetan Plateau during 1960-2006[J]. Sciences in Cold and Arid Regions, 2016, 8(5): 367-377.
[10] MaoShan Li, ZhongBo Su, YaoMing Ma, XueLong Chen, Lang Zhang, ZeYong Hu. Characteristics of land-atmosphere energy and turbulent fluxes over the plateau steppe in central Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2016, 8(2): 103-115.
[11] GuangSheng Liu, GenXu Wang. Influence of short-term experimental warming on heat-water processes of the active layer in a swamp meadow ecosystem of the Qinghai-Tibet Plateau[J]. Sciences in Cold and Arid Regions, 2016, 8(2): 125-134.
[12] JianZhong Xu, ShiChang Kang, ShuGui Hou, QiangGong Zhang, Jie Huang, CunDe Xiao, JiaWen Ren, DaHe Qin. Characterization of contemporary aeolian dust deposition on mountain glaciers of western China[J]. Sciences in Cold and Arid Regions, 2016, 8(1): 9-21.
[13] ShengJie Wang, WenYing He, HongBin Chen, JianChun Bian, ZhenHui Wang. Statistics of cloud heights over the Tibetan Plateau and its surrounding region derived from CloudSat data[J]. Sciences in Cold and Arid Regions, 2016, 8(1): 72-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] . [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436 -446 .