Sciences in Cold and Arid Regions ›› 2016, Vol. 8 ›› Issue (1): 9–21.doi: 10.3724/SP.J.1226.2016.00009

• ARTICLES • 上一篇    

Characterization of contemporary aeolian dust deposition on mountain glaciers of western China

JianZhong Xu1, ShiChang Kang1, ShuGui Hou3, QiangGong Zhang2, Jie Huang2, CunDe Xiao1, JiaWen Ren1, DaHe Qin1   

  1. 1. State Key Laboratory of Cryospheric Sciences(SKLCS), Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences(CAS), Lanzhou, Gansu 730000, China;
    2. Institute of Tibetan Plateau Research(ITP), Chinese Academy of Sciences(CAS), Beijing 100086, China;
    3. MOE Key Laboratory for Coast and Island Development, School of Geographic and Oceanographic Sciences(SGOS), Nanjing University, Nanjing, Jiangsu 210093, China
  • 收稿日期:2015-07-20 修回日期:2015-09-07 发布日期:2018-11-23
  • 通讯作者: JianZhong Xu E-mail:jzxu@lzb.ac.cn
  • 基金资助:
    This research was supported by grants from the Hundred Talents Program of Chinese Academy of Sciences, the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (NSFC) (41121001, ISIS584763SN:5609773), and the Scientific Research Foundation of the Key Laboratory of Cryospheric Sciences (SKLCS-ZZ-2014-01-04).

Characterization of contemporary aeolian dust deposition on mountain glaciers of western China

JianZhong Xu1, ShiChang Kang1, ShuGui Hou3, QiangGong Zhang2, Jie Huang2, CunDe Xiao1, JiaWen Ren1, DaHe Qin1   

  1. 1. State Key Laboratory of Cryospheric Sciences(SKLCS), Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences(CAS), Lanzhou, Gansu 730000, China;
    2. Institute of Tibetan Plateau Research(ITP), Chinese Academy of Sciences(CAS), Beijing 100086, China;
    3. MOE Key Laboratory for Coast and Island Development, School of Geographic and Oceanographic Sciences(SGOS), Nanjing University, Nanjing, Jiangsu 210093, China
  • Received:2015-07-20 Revised:2015-09-07 Published:2018-11-23
  • Contact: JianZhong Xu E-mail:jzxu@lzb.ac.cn
  • Supported by:
    This research was supported by grants from the Hundred Talents Program of Chinese Academy of Sciences, the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (NSFC) (41121001, ISIS584763SN:5609773), and the Scientific Research Foundation of the Key Laboratory of Cryospheric Sciences (SKLCS-ZZ-2014-01-04).

摘要: From 2008 to 2010, a total of 15 snow pit samples were collected from 13 mountain glaciers in western China. In this study these samples are used to determine the spatial distribution of insoluble particle concentrations and dust deposition fluxes in western China. The results show that the mass concentrations of insoluble particles exhibit high spatial variation and strongly decrease (by a factor of approximately 50) from the north (Tienshan Mountains) to the south (Himalayas). However, the insoluble particles concentrations at the southeastern Tibetan Plateau (TP) sites are also high and approximately 30 times greater than those in the Himalayas. The spatial distribution of the dust flux is similar to that of the mass concentrations; however, the high dust deposition rate in the southeastern TP is very significant as a result of the extensive snow accumulation (precipitation) in this region. The average sizes of the insoluble particles at each site generally exhibit bimodal distributions with peaks at approximately 5 μm and 10 μm, which can be explained as resulting from dust emissions from regional and local sources, respectively. The enrichment factors for most of the elements measured in insoluble particles are less than 10 at all of the study sites, indicating primarily crustal sources. However, the sites located in the peripheral mountains of western China, such as the Tienshan Mountains and the Himalayas, are characterized by high levels of certain enrichment elements (e.g., Cu, Zn, Cr, and V) indicative of sources related to the long-range transport of pollutants.

关键词: snow pit, dust, insoluble particle, Tibetan Plateau

Abstract: From 2008 to 2010, a total of 15 snow pit samples were collected from 13 mountain glaciers in western China. In this study these samples are used to determine the spatial distribution of insoluble particle concentrations and dust deposition fluxes in western China. The results show that the mass concentrations of insoluble particles exhibit high spatial variation and strongly decrease (by a factor of approximately 50) from the north (Tienshan Mountains) to the south (Himalayas). However, the insoluble particles concentrations at the southeastern Tibetan Plateau (TP) sites are also high and approximately 30 times greater than those in the Himalayas. The spatial distribution of the dust flux is similar to that of the mass concentrations; however, the high dust deposition rate in the southeastern TP is very significant as a result of the extensive snow accumulation (precipitation) in this region. The average sizes of the insoluble particles at each site generally exhibit bimodal distributions with peaks at approximately 5 μm and 10 μm, which can be explained as resulting from dust emissions from regional and local sources, respectively. The enrichment factors for most of the elements measured in insoluble particles are less than 10 at all of the study sites, indicating primarily crustal sources. However, the sites located in the peripheral mountains of western China, such as the Tienshan Mountains and the Himalayas, are characterized by high levels of certain enrichment elements (e.g., Cu, Zn, Cr, and V) indicative of sources related to the long-range transport of pollutants.

Key words: snow pit, dust, insoluble particle, Tibetan Plateau

Bonasoni P, Laj P, Angelini F, et al., 2008. The ABC-Pyramid Atmospheric Research Observatory in Himalaya for aerosol, ozone and halocarbon measurements. Science of the Total En-vironment, 391(2-3):252-261. DOI:10.1016/j.scitotenv. 2007.10.024.
Cao ZZ, Yang YH, Lu JL, et al., 2011. Atmospheric particle cha-racterization, distribution, and deposition in Xi'an, Shaanxi province, central China. Environmental Pollution, 159(2):577-584. DOI:10.1016/j.envpol.2010.10.006.
Cong Z, Kang S, Liu X, et al., 2007. Elemental composition of aerosol in the Nam Co region, Tibetan Plateau, during summer monsoon season. Atmospheric Environment, 41(6):1180-1187. DOI:10.1016/j.atmosenv.2006.09.046.
Di Girolamo L, Bond TC, Bramer D, et al., 2004. Analysis of Multi-Angle Imaging Spectroradiometer (MISR) aerosol optical depths over Greater India during winter 2001-2004. Geo-physical Research Letters, 31(23):L23115. DOI:10.1029/2004GL021273.
Duce RA, Unni CK, Ray BJ, et al., 1980. Long-range atmospheric transport of soil dust from Asia to the tropical north Pacific:temporal variability. Science, 209(4464):1522-1524.
Fang X, Han Y, Ma J, et al., 2004. Dust storms and loess accumulation on the Tibetan Plateau:a case study of dust event on 4 March 2003 in Lhasa. Chinese Science Bulletin, 49(9):953-960. DOI:10.1007/BF03184018.
Field JP, Belnap J, Breshears DD, et al., 2010. The ecology of dust. Front Ecology and the Environment, 8:423-430. DOI:http://dx.doi.org/10.1890/090050.
Forster P, Ramaswamy V, Artaxo P, et al., 2007. Changes in At-mospheric Constituents and in Radiative Forcing. Cambridge, UK:Cambridge University Press.
Guo W, Xu J, Liu S, et al., 2014. The second glacier inventory dataset of China (Version 1.0). Cold and Arid Regions Science Data Center at Lanzhou, China.
Hindman EE, Upadhyay BP, 2002. Air pollution transport in the Himalayas of Nepal and Tibet during the 1995-1996 dry sea-son. Atmospheric Environment, 36(4):727-739. DOI:10.1016/S1352-2310(01)00495-2.
Horvath H, Kasaharat M, Pesava P, 1996. The size distribution and composition of the atmospheric aerosol at a rural and nearby urban location. Journal of Aerosol Science, 27(3):417-435. DOI:10.1016/0021-8502(95)00546-3.
Hou SG, Qin DH, Zhang DQ, et al., 2003. A 154a high-resolution ammonium record from the Rongbuk Glacier, North Slope of Mt. Qomolangma (Everest), Tibet-Himal region. Atmospheric Environment, 37(5):721-729. DOI:10.1016/S1352-2310 (02)00582-4.
Hren MT, Chamberlain CP, Hilley GE, et al., 2007. Major ion chemistry of the Yarlung Tsangpo-Brahmaputra river:chemical weathering, erosion, and CO2 consumption in the southern Tibetan Plateau and eastern syntaxis of the Himalaya. Geochimica et Cosmochimica Acta, 71(12):2907-2935. DOI:10.1016/j.gca.2007.03.021.
Hu MH, Stallard RF, Edmond JM, 1982. Major ion chemistry of some large Chinese rivers. Nature, 298:550-553. DOI:10.1038/298550a0.
Huang JP, Minnis P, Yi YH, et al., 2007. Summer dust aerosols detected from Calipso over the Tibetan Plateau. Geophysical Re search Letters, 34(18):L18805. DOI:10.1029/2007GL029938.
Huang X, Sillanpää M, Duo B, et al., 2008. Water quality in the Tibetan Plateau:metal contents of four selected rivers. Envi-ronmental Pollution, 156(2):270-277. DOI:10.1016/j.envpol. 2008.02.014.
Huang X, Sillanpää M, Gjessing ET, et al., 2009. Water quality in the Tibetan Plateau:major ions and trace elements in the headwaters of four major Asian rivers. Science of the Total Environment, 407(24):6242-6254. DOI:10.1016/j.scitotenv. 2009.09.001.
Jeong GY, 2008. Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils. Journal of Geophysical Research, 113(D2):D02208. DOI:10.1029/2007JD008606.
Kang SC, Zhang QG, Kaspari S, et al., 2007. Spatial and seasonal variations of elemental composition in Mt. Everest (Qomo-langma) snow/firn. Atmospheric Environment, 41(34):7208-7218. DOI:10.1016/j.atmosenv.2007.05.024.
Kaspari S, Mayewski PA, Handley M, et al., 2009. Recent increases in atmospheric concentrations of Bi, U, Cs, S and Ca from a 350-Year Mount Everest ice core record. Journal Geophysical Research, 114(D4):D04302. DOI:10.1029/2008JD011088.
Lawrence CR, Painter TH, Landry CC, et al., 2010. Contemporary geochemical composition and flux of aeolian dust to the San Juan mountains, Colorado, United States. Journal of Geophysical Research, 115(G3):G03007. DOI:10.1029/2009JG 001077.
Liu Z, Liu D, Huang J, et al., 2008. Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of Calipso lidar observations. Atmospheric Chemistry and Physics, 8:5045-5060. DOI:10.5194/acp-8-5045-2008.
Ma LJ, Zhang TJ, Li QX, et al., 2008. Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China. Journal of Geophysical Research, 113(D15):D15115. DOI:10.1029/2007JD009549.
Martin JH, Gordon RM, Fitzwater SE, 1991. The case for iron. Limnology and Oceanography, 36(8):1793-1802.
Osada K, Iida H, Kido M, et al., 2004. Mineral dust layers in snow at Mount Tateyama, central Japan:formation processes and characteristics. Tellus B, 56(4):382-392. DOI:10.1111/j. 1600-0889.2004.00108.x.
Painter TH, Barrett AP, Landry CC, et al., 2007. Impact of disturbed desert soils on duration of mountain snow cover. Geophysical Research Letters, 34(12):L12502. DOI:10.1029/2007GL030284.
Praharaj T, Powell MA, Hart BR, et al., 2002. Leachability of elements from sub-bituminous coal fly ash from India. Envi-ronmental International, 27(8):609-615. DOI:10.1016/S01 60-4120(01)00118-0.
Rajot JL, Formenti P, Alfaro S, et al., 2008. Amma dust experiment:an overview of measurements performed during the dry season special observation period (SOP) at the Banizoumbou (Niger) supersite. Journal of Geophysical Research, 113(D23):D00C14. DOI:10.1029/2008JD009906.
Shen ZB, Zhang XY, Liu HY, 1997. The sources of aerosol in the lower layer atmosphere at Wudaoliang over Qinghai-Xizang Plateau. Plateau Meteorology, 16:345-352.
Sheng J, Wang X, Gong P, et al., 2012. Heavy metals of the Tibetan top soils:level, source, spatial distribution, temporal variation and risk assessment. Environmental Science and Pollution Research, 19(8):3362-3370. DOI:10.1007/s1135 6-012-0857-5.
Shi YF, Huang MH, Yao TD, et al., 2000. Glaciers and Their Environments in China:the Present, Past and Future. Beijing:Science Press.
Tian LD, Yao TD, MacClune K, et al., 2007. Stable isotopic variations in West China:a consideration of moisture sources. Journal of Geophysical Research, 112(D10):D10112. DOI:10.1029/2006JD007718.
Wake CP, Mayewski PA, Li Z, et al., 1994. Modern eolian dust deposition in Central Asia. Tellus B, 46:220-233. DOI:10.1034/j.1600-0889.1994.t01-2-00005.x.
Wang NL, Thompson LG, Davis ME, 2006. Variations of atmos-pheric dust loading in the southern and northern Tibetan Plateau over the last millennium recorded in ice cores. Quaternary Sciences, 26(5):752-761.
Wang XP, Xu BQ, Kang SC, et al., 2008. The historical residue trends of DDT, hexachlorocyclohexanes and paromatic hydrocarbons in an ice core from Mt. Everest, Central Himalayas, China. Atmospheric Environment, 42:6699-6709. DOI:10.1016/j.atmosenv.2008.04.035.
Wedepohl KH, 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7):1217-1232. DOI:10.1016/0016-7037(95)00038-2.
Wu GJ, Yao TD, Xu BQ, et al., 2010. Dust concentration and flux in ice cores from the Tibetan Plateau over the past few decades. Tellus B, 62(3):197-206. DOI:10.1111/j.1600-0889. 2010.00457.x.
Xia XG, Zong XM, Cong ZY, et al., 2011. Baseline continental aerosol over the central Tibetan Plateau and a case study of aerosol transport from South Asia. Atmospheric Environment, 45(39):7370-7378. DOI:10.1016/j.atmosenv.2011.07.067.
Xiao CD, Kang SC, Qin DH, et al., 2002. Transport of atmospheric impurities over the Qinghai-Xizang (Tibetan) Plateau as shown by snow chemistry. Journal of Asian Earth Science, 20(3):231-239. DOI:10.1016/S1367-9120(01)00065-7.
Xu JZ, Yu GM, Kang SC, et al., 2012. Sr-Nd isotope evidence for modern aeolian dust sources in mountain glaciers of western China. Journal of Glaciology, 58(211):859-865. DOI:http://dx.doi.org/10.3189/2012JoG12J006.
Xu JZ, Hou SG, Qin DH, et al., 2010. A 108.83-M ice-core record of atmospheric dust deposition at Mt. Qomolangma (Everest), central Himalaya. Quaternary Research, 73(1):33-38. DOI:10.1016/j.yqres.2009.09.005.
Yang HD, Battarbee RW, Turner SD, et al., 2010. Historical recon-struction of mercury pollution across the Tibetan Plateau using lake sediments. Environmental Science & Technology, 44(8):2918-2924. DOI:10.1021/es9030408.
Yang LY, Wang MX, Lv GT, et al., 1994. The observation and research for the condinental aerosol background characteristics in the northern part of the Qinghai-Xizang Plateau. Plateau Meteorology, 13(2):135-143.
Yang W, Yao TD, Xu BQ, et al., 2008. Quick ice mass loss and abrupt retreat of the maritime hlaciers in the Kangri Karpo Mountains, southeast Tibetan Plateau. Chinese Science Bulletin, 53(16):2547-2551. DOI:10.1007/s11434-008-0288-3.
Yasunari TJ, Bonasoni P, Laj P, et al., 2010. Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory:Pyramid data and snow albedo changes over Himalayan glaciers. Atmospheric Chemistry and Physics, 10(14):6603-6615. DOI:10.5194/acp-10-66 03-2010.
You XN, Li ZQ, Wang FT, et al., 2006. Seasonal evolution of insoluble microparticles stratigraphy in Glacier No. 1 percolation zone, eastern Tianshan, China. Advances in Earth Science, 21(11):1164-1170.
Yu GM, Xu JZ, Kang SC, et al., 2013. Lead isotopic composition of insoluble particles from widespread mountain glaciers in western China:natural vs. anthropogenic sources. Atmospheric Environment, 75:224-232. DOI:10.1016/j.atmosenv. 2013.04.018.
Zdanowicz C, Hall GEM, Vaive J, et al., 2006. Asian dustfall in the St. Elias mountains, Yukon, Canada. Geochimica et Cos-mochimica Acta, 70(14):3493-3507. DOI:10.1016/j. gca.2006.05.005.
Zdanowicz CM, Zielinski GA, Wake CP, 1998. Characteristics of modern atmospheric dust deposition in snow on the Penny ice cap, Baffin island, Arctic Canada. Tellus B, 50(5):506-520. DOI:10.1034/j.1600-0889.1998.t01-1-00008.x.
Zhang QG, Huang J, Wang FY, et al., 2012. Mercury dstribution and deposition in glacier snow over western China. Environmental Science & Technology, 46(10):5404-5413. DOI:10.1021/es300166x.
Zhang RJ, Shen ZX, Zhang LM, et al., 2011. Elemental composition of atmospheric particles during periods with and without traffic restriction in Beijing:the effectiveness of traffic restriction measures. Scientific Online Letters on the Atmosphere (SOLA), 7:61-64. DOI:http://doi.org/10.2151/sola.2011-016.
Zhang XX, Shi PJ, Liu LY, et al., 2010. Ambient TSP concentration and dustfall in major cities of China:spatial distribution and temporal variability. Atmospheric Environment, 44(13):1641-1648. DOI:10.1016/j.atmosenv.2010.01.035.
Zhang XY, Arimoto R, Cao JJ, et al., 2001. Atmospheric dust aerosol over the Tibetan Plateau. Journal of Geophysical Re-search, 106(D16):18471-18476. DOI:10.1029/2000JD900672.
Zhang XY, Cao JJ, Li LM, et al., 2002. Characterization of at-mospheric aerosol over Xi'an in the south margin of the Loess Plateau, China. Atmospheric Environment, 36(26):4189-4199. DOI:10.1016/S1352-2310(02)00347-3.
Zhang XY, Shen ZB, Zhang GY, et al., 1996. Remote mineral aerosols in Westerlies and their contributions to the Chinese Loess. Science China (Series D), 39(2):134-143.
Zhao ZP, Tian LD, Fischer E, et al., 2008. Study of chemical composition of precipitation at an alpine site and a rural site in the Urumqi River Valley, eastern Tien Shan, China. Atmos-pheric Environment, 42(39):8934-8942. DOI:10.1016/j.atmosenv.2008.08.003.
Zhuang GS, Guo JH, Yuan H, et al., 2001. The compositions, sources, and size distribution of the dust storm from China in spring of 2000 and its impact on the global environment. Chi-nese Science Bulletin, 46(11):895-900. DOI:10.1007/BF02900460.
[1] HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China[J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207-218.
[2] ZhenMing Wu, Lin Zhao, Lin Liu, Rui Zhu, ZeShen Gao, YongPing Qiao, LiMing Tian, HuaYun Zhou, MeiZhen Xie. Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data[J]. Sciences in Cold and Arid Regions, 2018, 10(2): 114-125.
[3] BenLi Liu, JianJun Qu, ShiChang Kang, Bing Liu. Climate change inferred from aeolian sediments in a lake shore environment in the central Tibetan Plateau during recent centuries[J]. Sciences in Cold and Arid Regions, 2018, 10(2): 134-144.
[4] SiQiong Luo, BoLi Chen, ShiHua Lyu, XueWei Fang, JingYuan Wang, XianHong Meng, LunYu Shang, ShaoYing Wang, Di Ma. An improvement of soil temperature simulations on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(1): 80-94.
[5] YueFang Li, Zhen Li, Ju Huang, Giulio Cozzi, Clara Turetta, Carlo Barbante, LongFei Xiong. Variations of trace elements and rare earth elements (REEs) treated by two different methods for snow-pit samples on the Qinghai-Tibetan Plateau and their implications[J]. Sciences in Cold and Arid Regions, 2017, 9(6): 568-579.
[6] YuLan Zhang, ShiChang Kang, Min Xu, Michael Sprenger, TanGuang Gao, ZhiYuan Cong, ChaoLiu Li, JunMing Guo, ZhiQiang Xu, Yang Li, Gang Li, XiaoFei Li, YaJun Liu, HaiDong Han. Light-absorbing impurities on Keqikaer Glacier in western Tien Shan: concentrations and potential impact on albedo reduction[J]. Sciences in Cold and Arid Regions, 2017, 9(2): 97-111.
[7] ShaoYing Wang, Yu Zhang, ShiHua Lyu, LunYu Shang, YouQi Su, HanHui Zhu. Radiation balance and the response of albedo to environmental factors above two alpine ecosystems in the eastern Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2017, 9(2): 142-157.
[8] LunYu Shang, Yu Zhang, ShiHua Lyu, ShaoYing Wang, YinHuan Ao, SiQiong Luo, ShiQiang Chen. Winter estimation of surface roughness length over eastern Qinghai-Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2017, 9(2): 151-157.
[9] Zhuo Ga, Tao Chen, La Ba, PuBuCiRen, Ba Sang. Distribution of winter-spring snow over the Tibetan Plateau and its relationship with summer precipitation in Yangtze River[J]. Sciences in Cold and Arid Regions, 2017, 9(1): 20-28.
[10] Yun Niu, XianDe Liu, Xin Li, YanQiang Wei, Hu Zhang, XiaoYan Li. Relationship between sand-dust weather and water dynamics of desert areas in the middle reaches of Heihe River[J]. Sciences in Cold and Arid Regions, 2016, 8(6): 516-523.
[11] ZhiCai Li, Yan Song, Wei Zhang, Jing Zhang, ZiNiu Xiao. Interdecadal correlation of solar activity with Tibetan Plateau snow depth and winter atmospheric circulation in East Asia[J]. Sciences in Cold and Arid Regions, 2016, 8(6): 524-535.
[12] WenTao Du, ShiChang Kang, Xiang Qin, XiaoQing Cui, WeiJun Sun. Atmospheric insight to climatic signals of δ18O in a Laohugou ice core in the northeastern Tibetan Plateau during 1960-2006[J]. Sciences in Cold and Arid Regions, 2016, 8(5): 367-377.
[13] FengFeng Lei, WanYin Luo, ZhiBao Dong, YingZhu Sang, LiZhu Luo, Gang Huang, Hua Liu, QiZhang Chen. An investigation of the effects of dust storms on rat lung using HRCT and blood gas analysis[J]. Sciences in Cold and Arid Regions, 2016, 8(4): 319-324.
[14] MaoShan Li, ZhongBo Su, YaoMing Ma, XueLong Chen, Lang Zhang, ZeYong Hu. Characteristics of land-atmosphere energy and turbulent fluxes over the plateau steppe in central Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2016, 8(2): 103-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!