Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (1): 6280.doi: 10.3724/SP.J.1226.2019.00062
How changes of groundwater level affect the desert riparian forest ecosystem in the Ejina Oasis, Northwest China
HaiYang Xi1,2,*(),JingTian Zhang1,4,Qi Feng1,2,Lu Zhang3,JianHua Si1,2,TengFei Yu1,2
- 1. Key Laboratory of Ecohydrology of Inland River Basin, Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
2. Alashan Desert Eco-hydrology Experimental Research Station, Ejina, Inner Mongolia 735400, China
3. CSIRO Land and Water Flagship, Canberra, ACT 2601, Australia
4. University of Chinese Academy of Sciences, Beijing 100049, China
Ayars JE , Christen EW , Soppe RW , et al. , 2006. The resource potential of in-situ shallow ground water use in irrigated agriculture: a review. Irrigation Science, 24(3): 147−160. DOI: 10.1007/s00271-005-0003-y.
doi: 10.1007/s00271-005-0003-y. |
|
Chambel A , 2006. Groundwater in semi-arid mediterranean areas: desertification, soil salinization and ecosystems.In: Baba A, Howard KWF, Gunduz Oeds. Groundwater and Ecosystems. (eds.). Dordrecht: Springer, pp.47-58.DOI: 10.1007/1-4020-4738-X_4.
doi: 10.1007/1-4020-4738-X_4. |
|
Chen YN , Wang Q , Li WH , et al. , 2006. Rational groundwater table indicated by the eco-physiological parameters of the vegetation: a case study of ecological restoration in the lower reaches of the Tarim River. Chinese Science Bulletin, 51(S1): 8−15. DOI: 10.1007/s11434-006-8202-3.
doi: 10.1007/s11434-006-8202-3. |
|
Chen YN , Li WH , Xu CC , et al. , 2015. Desert riparian vegetation and groundwater in the lower reaches of the Tarim River Basin. Environmental Earth Sciences, 73(2): 547−558. DOI: 10.1007/s12665-013-3002-y.
doi: 10.1007/s12665-013-3002-y. |
|
Cheng L , Zhang L , Wang YP , et al. , 2014a. Quantifying the effects of elevated CO2 on water budgets by combining FACE data with an ecohydrological model. Ecohydrology, 7(6): 1574−1588. DOI: 10.1002/eco.1478.
doi: 10.1002/eco.1478. |
|
Cheng L , Zhang L , Wang YP , et al. , 2014b. Impacts of elevated CO2, climate change and their interactions on water budgets in four different catchments in Australia. Journal of Hydrology, 519: 1350−1361. DOI: 10.1016/j.jhydrol. 2014.09.020.
doi: 10.1016/j.jhydrol. 2014.09.020. |
|
Crowley GM, 1994. Groundwater rise, soil salinization and the decline of Casuarina in southeastern Australia during the late quaternary. Australian Ecology, 19(4): 417−424. DOI: 10. 1111/j.1442-9993.1994.tb00507.x.
doi: 10. 1111/j.1442-9993.1994.tb00507.x. |
|
Dawes WR , Short DL , 1993. The efficient numerical solution of differential equations for coupled water and solute dynamics: the WAVES model. Technical Memorandum-CSIRO, Australia, Division of Water Resources, 93(18). Procite: 75f60280-d9ac-4f71-aacf-cd5454e3284e. | |
Doody TM , Holland KL , Benyon RG , et al. , 2009. Effect of groundwater freshening on riparian vegetation water balance. Hydrological Processes, 23(24): 3485−3499. DOI: 10. 1002/hyp.7460.
doi: 10. 1002/hyp.7460. |
|
Eklundh L , Jönsson P , 2012. IMESAT 3.1 software manual. Lund, Sweden: Lund University. | |
Fan XM , Pedroli B , Liu GH , et al. , 2011. Potential plant species distribution in the Yellow River Delta under the influence of groundwater level and soil salinity. Ecohydrology, 4(6): 744−756. DOI: 10.1002/eco.164.
doi: 10.1002/eco.164. |
|
Feng Q , Peng JZ , Li JG , et al. , 2012. Using the concept of ecological groundwater level to evaluate shallow groundwater resources in hyperarid desert regions. Journal of Arid Land, 4(4): 378−389. DOI: 10.3724/SP.J.1227.2012.00378.
doi: 10.3724/SP.J.1227.2012.00378. |
|
Fu AH , Chen YN , Li WH , 2014. Water use strategies of the desert riparian forest plant community in the lower reaches of Heihe River Basin, China. Science China Earth Sciences, 57(6): 1293−1305. DOI: 10.1007/s11430-013-4680-8.
doi: 10.1007/s11430-013-4680-8. |
|
Fu BH , Burgher I , 2015. Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. Journal of Arid Environments, 113: 59−68. DOI: 10.1016/j.jaridenv.2014.09.010.
doi: 10.1016/j.jaridenv.2014.09.010. |
|
Han M , Zhao CY , Šimůnek J , et al. , 2015. Evaluating the impact of groundwater on cotton growth and root zone water balance using Hydrus-1D coupled with a crop growth model. Agricultural Water Management, 160: 64−75. DOI: 10.1016/j.agwat. 2015.06.028.
doi: 10.1016/j.agwat. 2015.06.028. |
|
Hao XM , Li WH , Huang X , et al. , 2010. Assessment of the groundwater threshold of desert riparian forest vegetation along the middle and lower reaches of the Tarim River, China. Hydrological Processes, 24(2): 178−186. DOI: 10.1002/hyp.7432.
doi: 10.1002/hyp.7432. |
|
Hose GC , Bailey J , Stumpp C , et al. , 2014. Groundwater depth and topography correlate with vegetation structure of an upland peat swamp, Budderoo Plateau, NSW, Australia. Ecohydrology, 7(5): 1392−1402. DOI: 10.1002/eco.1465.
doi: 10.1002/eco.1465. |
|
Hou T , Zhu YH , Lu HS , et al. , 2011. Modelling capillary rise of crop land under different groundwater level. Hydrological Cycle and Water Resources Sustainability in Changing Environments, 350: 212−218. | |
Jansson R , Laudon H , Johansson E , et al. , 2007. The importance of groundwater discharge for plant species number in riparian zones. Ecology, 88(1): 131−139. DOI: 10.1890/0012-9658(2007)88 [131:TIOGDF]2.0.CO;2.
doi: 10.1890/0012-9658(2007)88 |
|
Jia YH , Zhao CY , Zhou L , et al. , 2009. Estimation of Leaf Area Index using remote sensing in the groundwater-fluctuating belt in lower reaches of Heihe River, Northwest China. In: Proceedings of 2009 International Conference on Environmental Science and Information Application Technology. Wuhan, China: IEEE, pp. 462−465. DOI: 10.1109/ESIAT. 2009.403.
doi: 10.1109/ESIAT. 2009.403. |
|
Jönsson P , Eklundh L , 2004. TIMESAT−a program for analyzing time-series of satellite sensor data. Computers & Geosciences, 30(8): 833−845. DOI: 10.1016/j.cageo. 2004.05.006.
doi: 10.1016/j.cageo. 2004.05.006. |
|
Jorenush MH , Sepaskhah AR , 2003. Modelling capillary rise and soil salinity for shallow saline water table under irrigated and non-irrigated conditions. Agricultural Water Management, 61(2): 125−141. DOI: 10.1016/S0378-3774(02)00176-2.
doi: 10.1016/S0378-3774(02)00176-2. |
|
Kuglerová L , Jansson R , Ågren A , et al. , 2014. Groundwater discharge creates hotspots of riparian plant species richness in a boreal forest stream network. Ecology, 95(3): 715−725. DOI: 10.1890/13-0363.1.
doi: 10.1890/13-0363.1. |
|
Lamontagne S , Cook PG , O'Grady A , et al. , 2005. Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia). Journal of Hydrology, 310(1−4): 280−293. DOI: 10.1016/j.jhydrol.2005.01.009.
doi: 10.1016/j.jhydrol.2005.01.009. |
|
Li WH , Zhou HH , Fu AH , et al. , 2013. Ecological response and hydrological mechanism of desert riparian forest in inland river, northwest of China. Ecohydrology, 6(6): 949−955. DOI: 10.1002/eco.1385.
doi: 10.1002/eco.1385. |
|
Ma XD , Chen YN , Zhu CG , et al. , 2011. The variation in soil moisture and the appropriate groundwater table for desert riparian forest along the Lower Tarim River. Journal of Geographical Sciences, 21(1): 150−162. DOI: 10.1007/s11442-011-0835-8.
doi: 10.1007/s11442-011-0835-8. |
|
Mahoney JM , Rood SB , 1992. Response of a hybrid poplar to water table decline in different substrates. Forest Ecology and Management, 54(1−4): 141−156. DOI: 10.1016/0378-1127(92)90009-X.
doi: 10.1016/0378-1127(92)90009-X. |
|
Marohn C , Distel A , Dercon G , et al. , 2012. Impacts of soil and groundwater salinization on tree crop performance in post-tsunami Aceh Barat, Indonesia. Natural Hazards and Earth System Sciences, 12(9): 2879−2891. DOI: 10.5194/nhess-12-2879-2012.
doi: 10.5194/nhess-12-2879-2012. |
|
Muñoz-Reinoso JC, 2001. Vegetation changes and groundwater abstraction in SW Doñana, Spain. Journal of Hydrology, 242(3−4): 197−209. DOI: 10.1016/S0022-1694(00)00397-8.
doi: 10.1016/S0022-1694(00)00397-8. |
|
Oomes MJM , Olff H , Altena HJ , 1996. Effects of vegetation management and raising the water table on nutrient dynamics and vegetation change in a wet grassland. Journal of Applied Ecology, 33: 576−588. DOI: 10.2307/2404986.
doi: 10.2307/2404986. |
|
ORNL DAAC, 2018. MODIS Collection 5 Land Products Global Subsetting and Visualization Tool. ORNLDAAC, OakRidge, Tennessee, USA. Accessed on September 7, 2015. Subset obtained for MOD15A2 product at 41.9943N,101.1372E, time period: 2000-02-18 to 2015-08-21, and subset size:7×7 km. DOI: https://doi.org/10.3334/ORNLDAAC/1241.
doi: 10.3334/ORNLDAAC/1241. |
|
Pang ZH , Huang TM , Chen YN , 2010. Diminished groundwater recharge and circulation relative to degrading riparian vegetation in the middle Tarim River, Xinjiang Uygur, Western China. Hydrological Processes,24(2): 147−159. DOI: 10.1002/hyp.7438.
doi: 10.1002/hyp.7438. |
|
Perry LG , Andersen DC , Reynolds LV, et al. , 2012. Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America. Global Change Biology, 18(3): 821−842. DOI: 10.1111/j.1365-248 6.2011.02588.x.
doi: 10.1111/j.1365-248 6.2011.02588.x. |
|
Sabo JL , Sponseller R , Dixon M , et al. , 2005. Riparian zones increase regional species richness by harboring different, notmore, species. Ecology, 86(1): 56−62. DOI: 10.1890/04-0668.
doi: 10.1890/04-0668. |
|
Scott RL , Cable WL , Huxman TE , et al. , 2008. Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed. Journal of Arid Environments, 72(7): 1232−1246. DOI: 10.1016/j.jaridenv.2008.01.001.
doi: 10.1016/j.jaridenv.2008.01.001. |
|
Scott RL, 2010. Using watershed water balance to evaluate the accuracy of eddy covariance evaporation measurements for three semiarid ecosystems. Agricultural and Forest Meteorology, 150(2): 219−225. DOI: 10.1016/j.agrformet. 2009. 11.002.
doi: 10.1016/j.agrformet. 2009. 11.002. |
|
Silberstein RP , Dawes WR , Bastow TP , et al. , 2013. Evaluation of changes in post-fire recharge under native woodland using hydrological measurements, modelling and remote sensing. Journal of Hydrology, 489: 1−15. DOI: 10.1016/j.jhydrol.2013.01.037.
doi: 10.1016/j.jhydrol.2013.01.037. |
|
Smettem KRJ , Waring RH , Callow JN , et al. , 2013. Satellite-derived estimates of forest leaf area index in southwest Western Australia are not tightly coupled to interannual variations in rainfall: implications for groundwater decline in a drying climate. Global Change Biology, 19(8): 2401−2412. DOI: 10.1111/gcb.12223.
doi: 10.1111/gcb.12223. |
|
Sommer B , Froend R , 2014. Phreatophytic vegetation responses to groundwater depth in a drying mediterranean-type landscape. Journal of Vegetation Science, 25(4): 1045−1055. DOI: 10.1111/jvs.12178.
doi: 10.1111/jvs.12178. |
|
Soylu ME , Kucharik CJ , Loheide II SP , 2014. Influence of groundwater on plant water use and productivity: development of an integrated ecosystem—Variably saturated soil water flow model. Agricultural and Forest Meteorology, 189−190: 198−210. DOI: 10.1016/j.agrformet. 2014. 01.019.
doi: 10.1016/j.agrformet. 2014. 01.019. |
|
Stromberg JC , Tiller R , Richter B , 1996. Effects of groundwater decline on riparian vegetation of semiarid regions: the San Pedro, Arizona. Ecological Applications, 6(1): 113−131. DOI: 10.2307/2269558.
doi: 10.2307/2269558. |
|
Vogt T , Schirmer M , Cirpka OA , 2012. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution. Hydrology and Earth System Sciences, 16(2): 473−487. DOI: 10.5194/hess-16-473-2012.
doi: 10.5194/hess-16-473-2012. |
|
Williams DG , Cable W , Hultine K , et al. , 2004. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology, 125(3−4): 241−258. DOI: 10.1016/j.agrformet. 2004.04.008.
doi: 10.1016/j.agrformet. 2004.04.008. |
|
Wilson KB , Hanson PJ , Mulholland PJ , et al. , 2001. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology, 106(2): 153−168. DOI: 10.1016/S0168-1923(00)00199-4.
doi: 10.1016/S0168-1923(00)00199-4. |
|
Xi HY , Feng Q , Zhang L , et al. , 2016. Effects of water and salinity on plant species composition and community succession in Ejina Desert Oasis, northwest China. Environmental Earth Sciences, 75(2): 138. DOI: 10.1007/s12665-015-4823-7.
doi: 10.1007/s12665-015-4823-7. |
|
Yang YH , Chen YN , Li WH , 2009. Relationship between soil properties and plant diversity in a desert riparian forest in the lower reaches of the Tarim River, Xinjiang, China. Arid Land Research and Management,23(4): 283−296. DOI: 10.1080/15324980903231991.
doi: 10.1080/15324980903231991. |
|
Zambrano-Bigiarini M, 2011. Goodness-of-fit measures to compare observed and simulated values with hydroGOF. DOI: https://cran.r-project.org/web/packages/hydroGOF/vignettes/hydroGOF_Vignette.pdf.
doi: https://cran.r-project.org/web/packages/hydroGOF/vignettes/hydroGOF_Vignette.pdf. |
|
Zhang L , Dawes WR , Hatton TJ , 1996. Modelling hydrologic processes using a biophysically based mode-application of WAVES to FIFE and HAPEX-MOBILHY. Journal of Hydrology, 185(1−4): 147−169. DOI: 10.1016/0022-1694(95)03006-9.
doi: 10.1016/0022-1694(95)03006-9. |
|
Zhang L , Dawes WR , 1998. WAVES: an integrated energy and water balance model. Canberra: CSIRO Land and Water. | |
Zhao CY , Cheng GD , Nan ZR , et al. , 2007. Relationship between vegetation distribution and groundwater level in the lower reaches of Heihe River basin, China. In: Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona, Spain: IEEE, pp. 3963−3966. DOI: 10.1109/IGARSS.2007.4423716.
doi: 10.1109/IGARSS.2007.4423716. |
|
Zhao Y , Zhao CY , Xu ZL , et al. , 2012. Physiological responses of Populus euphratica Oliv. to groundwater table variations in the lower reaches of Heihe River, Northwest China. Journal of Arid Land, 4(3): 281−291. DOI: 10.3724/SP.J.1227. 2012.00281.
doi: 10.3724/SP.J.1227. 2012.00281. |
No related articles found! |