Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (1): 81–92.doi: 10.3724/SP.J.1226.2019.00081

• • 上一篇    

  

  • 收稿日期:2018-07-18 接受日期:2018-09-29 出版日期:2019-02-01 发布日期:2019-03-22

Increase in medium-size rainfall events will enhance the C-sequestration capacity of biological soil crusts

CuiHua Huang1,Fei Peng1,2,3,*(),Itaru Shibata3,Jun Luo1,Xian Xue1,Kinya Akashi2,3,Atsushi Tsunekawa2,3,Tao Wang1   

  1. 1. Minqin Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, Gansu 730000, China
    2. International Platform for Dryland Research and Education, Tottori University, Koyama-Minami, Tottori 680-8550, Japan
    3. Arid Land Research Center, Tottori University, Hamasaka, Tottori 680-0001, Japan
  • Received:2018-07-18 Accepted:2018-09-29 Online:2019-02-01 Published:2019-03-22
  • Contact: Fei Peng E-mail:pengfei@lzb.ac.cn
  • About author:Fei Peng, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, Gansu 730000, China. Tel: +86-931-4967484; Fax: +86-931-8273894; E-mail:pengfei@lzb.ac.cn

Abstract:

Biological soil crusts (BSCs) play important roles in the carbon (C) balance in arid regions. Net C balance of BSCs is strongly dependent on rainfall and consequent activation of microbes in the BSCs. The compensation-rainfall size for BSCs (the minimum rainfall amount for a positive net C balance) is assumed to be different with BSCs of different developmental stages. A field experiment with simulated rainfall amount (SRA) of 0, 1, 5, 10, 20, and 40 mm was conducted to examine the C fluxes and compensation-rainfall size of BSCs in different parts of fixed dunes in the ecotone between the Badain Jaran Desert and the Minqin Oasis. We found algae?lichen crust on the interdunes and crest, algae crust on the leeward side, and lichen?moss crust on the windward. Even a small rainfall (1 mm) can activate both photosynthesis and respiration of all types of BSCs. The gross ecosystem production, ecosystem respiration, and net ecosystem exchange were significantly affected by SRA, hours after the simulated rainfall, position on a dune, and their interactions. The rapid activation of photosynthesis provides a C source and therefore could be responsible for the increase of C efflux after each rewetting. C-uptake and -emission capacity of all the BSCs positively correlated with rainfall size, with the lowest C fluxes on the leeward side. The compensation rainfall for a net C uptake was 3.80, 15.54, 8.62, and 1.88 mm for BSCs on the interdunes, the leeward side, the crest, and the windward side, respectively. The whole dune started to show a net C uptake with an SRA of 5 mm and maximized with an SRA of about 30 mm. The compensation-rainfall size is negatively correlated with chlorophyll content. Our results suggest that BSCs will be favored in terms of C balance, and sand dune stabilization could be sustained with an increasing frequency of 5?10 mm rainfall events in the desert?oasis transitional zone.

Key words: biological soil crust, rainfall size, desert?oasis ecotone, C balance, arid region

"

Depth Position SOC (g/kg) TN (g/kg) NO 3 - (mg/kg) NH 4 + (mg/kg) Clay (%) Silt (%) Sand (%) pH
0?2 cm Interdunes 6.91±0.98a 0.71±0.08a 8.33±4.92a 10.26±0.47bc 1.02±0.01ab 38.98±2.26ab 60.00±2.84ab 8.24±0.36a
Leeward 5.30±0.80ab 0.53±0.07ab 5.82±3.30a 12.43±0.14ab 1.18±0.10a 46.56±1.68a 52.26±1.77b 8.10±0.26a
Crest 6.23±0.24ab 0.65±0.03ab 7.67±1.42a 9.34±1.14cd 1.11±0.08a 44.09±2.49ab 54.80±2.56ab 8.02±0.22a
Windward 8.82±0.47a 0.88±0.05a 10.56±4.59a 13.97±0.40a 0.84±0.15ab 33.80±4.81ab 65.36±4.91ab 8.17±0.14a
2?5 cm Interdunes 1.83±0.80c 0.23±0.07c 5.82±3.30a 7.25±0.14de 0.46±0.17b 20.49±10.71b 79.05±10.87a 8.43±0.26a
Leeward 2.94±0.24bc 0.31±0.03bc 7.67±1.42a 7.29±1.14de 0.85±0.17ab 34.48±6.22ab 64.68±6.40ab 8.18±0.22a
Crest 2.82±0.47bc 0.29±0.05bc 10.56±4.59a 6.67±0.40e 0.75±0.12ab 32.97±5.47ab 66.28±5.59ab 8.45±0.14a
Windward 2.38±2.15bc 0.25±0.24c 10.09±4.69a 7.08±0.37de 0.76±0.25ab 29.05±10.96ab 79.29±11.21ab 8.34±0.11a

"

"

"

"

Source of variance/df NEE ER GEP
Month / 2 4.5* 20.9** 11.8**
HAF / 6 74.5** 103.2** 106.5**
SRA / 5 54.8** 97.0** 94.7**
Position / 3 20.9** 32.3** 32.9**
HAF×SRA / 29 7.6** 9.1** 9.6**
SRA×Position / 15 2.2** 2.8** 2.8**

"

"

"

"

"

Austin AT , Yahdjian L , Stark JM , et al . , 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141(2): 221−235. DOI: 10.1007/s00442-004-15 19-1.
doi: 10.1007/s00442-004-15 19-1.
Belnap J , Gillette DA , 1997. Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern Utah. Land Degradation & Development, 8(4): 355−362. DOI: 10.1002/ (SICI)1099-145X(199712)8:4<355::AID-LDR266>3.0.CO;2-H.
doi: 10.1002/
Belnap J , Lange OL , 2003. Biological soil crusts: structure, function, and management. Berlin, Heidelberg: Springer, pp. 272−276. DOI: 10.1007/978-3-642-56475-8.
doi: 10.1007/978-3-642-56475-8.
Belnap J , Phillips SL , Miller ME , 2004. Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia, 141(2): 306−316. DOI: 10.1007/s00442-003-1438-6.
doi: 10.1007/s00442-003-1438-6.
Bowker MA , Belnap J , Davidson DW , et al . , 2006. Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. Journal of Applied Ecology, 43(1): 152−163. DOI: 10.11 11/j.1365-2664.2006.01122.x.
doi: 10.11 11/j.1365-2664.2006.01122.x.
Bowker MA , Eldridge DJ , Val J , et al . , 2013. Hydrology in a patterned landscape is co-engineered by soil-disturbing animals and biological crusts. Soil Biology and Biochemistry, 61: 14−22. DOI: 10.1016/j.soilbio.2013.02.002.
doi: 10.1016/j.soilbio.2013.02.002.
Bowling DR , Grote EE , Belnap J , 2011. Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States. Journal of Geophysical Research: Biogeosciences, 116(G3): G03028. DOI: 10.1029/2011JG001643.
doi: 10.1029/2011JG001643.
Büdel B , Williams WJ , Reichenberger H , 2018. Annual net primary productivity of a cyanobacteria-dominated biological soil crust in the Gulf savannah, Queensland, Australia. Biogeosciences,15(2): 491−505. DOI: 10.5194/bg-15-491-2018.
doi: 10.5194/bg-15-491-2018.
Chamizo S , Cantón Y , Lazaro R , et al . , 2013. The role of biological soil crusts in soil moisture dynamics in two semiarid ecosystems with contrasting soil textures. Journal of Hydrology, 489: 74−84. DOI: 10.1016/j.jhydrol.2013.02.051.
doi: 10.1016/j.jhydrol.2013.02.051.
Coe KK , Belnap J , Sparks JP , 2012. Precipitation-driven carbon balance controls survivorship of desert biocrust mosses. Ecology, 93(7): 1626−1636. DOI: 10.1890/11-2247.1.
doi: 10.1890/11-2247.1.
Darby BJ , Neher DA , Belnap J , 2010. Impact of biological soil crusts and desert plants on soil microfaunal community composition. Plant and Soil, 328(1−2): 421−431. DOI: 10.1007/s11104-009-0122-y.
doi: 10.1007/s11104-009-0122-y.
Dong ZB , Man DQ , Luo WY , et al . , 2010. Horizontal aeolian sediment flux in the Minqin area, a major source of Chinese dust storms. Geomorphology, 116(1−2): 58−66. DOI: 10.10 16/j.geomorph.2009.10.008.
doi: 10.10 16/j.geomorph.2009.10.008.
Du JH , Yan P , Ding LG , et al . , 2009. Soil physical and chemical properties of Nitraria tangutorun nebkhas surface at different development stages in Minqin oasis. Journal of Desert Research, 29(2): 248−253.
Du JH , Yan P , Dong YX , 2011. Precipitation characteristics and its impact on vegetation restoration in Minqin County, Gansu Province, northwest China. International Journal of Climatology, 31(8): 1153−1165. DOI: 10.1002/joc.2122.
doi: 10.1002/joc.2122.
Fischer T , Veste M , 2018. Carbon cycling of biological soil crusts mirrors ecological maturity along a Central European inland dune catena. CATENA, 160: 68−75. DOI: 10.1016/j.catena.2017.09.004.
doi: 10.1016/j.catena.2017.09.004.
Funk FA , Loydi A , Peter G , 2014. Effects of biological soil crusts and drought on emergence and survival of a Patagonian perennial grass in the Monte of Argentina. Journal of Arid Land, 6(6): 735−741. DOI: 10.1007/s40333-014-0022-8.
doi: 10.1007/s40333-014-0022-8.
Grote EE , Belnap J , Housman DC , et al . , 2010. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Global Change Biology, 16(10): 2763−2774. DOI: 10.1111/j.1365-2486.2010.02201.x.
doi: 10.1111/j.1365-2486.2010.02201.x.
Huang L , Zhang ZS , Li XR , 2014. Carbon fixation and its influence factors of biological soil crusts in a revegetated area of the Tengger Desert, northern China. Journal of Arid Land, 6(6): 725−734. DOI: 10.1007/s40333-014-0027-3.
doi: 10.1007/s40333-014-0027-3.
Huxman TE , Snyder KA , Tissue D , et al . , 2004. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141(2): 254−268. DOI: 10.1007/s00442-004-16 82-4.
doi: 10.1007/s00442-004-16 82-4.
Jeffries DL , Link SO , Klopatek JM , 1993. CO2 fluxes of cryptogamic crusts: II. Response to dehydration. New Phytologist, 125(2): 391−396. DOI: 10.1111/j.1469-8137.1993.tb03891.x.
doi: 10.1111/j.1469-8137.1993.tb03891.x.
Jia RL , Li XR , Liu LC , et al . , 2008. Responses of biological soil crusts to sand burial in a revegetated area of the Tengger Desert, Northern China. Soil Biology and Biochemistry, 40(11): 2827−2834. DOI: 10.1016/j.soilbio.2008.07.029.
doi: 10.1016/j.soilbio.2008.07.029.
Jia RL , Li XR , Liu LC , et al . , 2012. Differential wind tolerance of soil crust mosses explains their micro-distribution in nature. Soil Biology and Biochemistry, 45: 31−39. DOI: 10.10 16/j.soilbio.2011.09.021.
doi: 10.10 16/j.soilbio.2011.09.021.
Jia RL , Li XR , Liu LC , et al . , 2014. Effects of sand burial on dew deposition on moss soil crust in a revegetated area of the Tennger Desert, Northern China. Journal of Hydrology, 519: 2341−2349. DOI: 10.1016/j.jhydrol.2014.10.031.
doi: 10.1016/j.jhydrol.2014.10.031.
Lange OL , Büdel B , Meyer A , et al . , 1993. Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. The Lichenologist, 25(2): 175−189. DOI: 10.1006/lich.1993.1025.
doi: 10.1006/lich.1993.1025.
Lange OL , Meyer A , Zellner H , et al . , 1994. Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert. Functional Ecology, 8(2): 253−264. DOI: 10.2307/2389909.
doi: 10.2307/2389909.
Lange OL , Belnap J , Reichenberger H , 1998. Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Functional Ecology, 12(2): 195−202. DOI:10.1046/j.1365-243 5.1998.00192.x.
doi: 10.1046/j.1365-243 5.1998.00192.x.
Lange OL, 2001. Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds.). Biological Soil Crusts: Structure, Function, and Management. Berlin: Springer, pp. 77−84. DOI: 10.1007/978-3-642-5647 5-8_18.
doi: 10.1007/978-3-642-5647 5-8_18.
Li XR , He MZ , Zerbe S , et al . , 2010. Micro-geomorphology determines community structure of biological soil crusts at small scales. Earth Surface Processes and Landforms, 35(8): 932−940. DOI: 10.1002/esp.1963.
doi: 10.1002/esp.1963.
Li XR , Zhang P , Su YG , et al . , 2012. Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: a four-year field study. CATENA, 97: 119−126. DOI: 10.1016/j.catena.2012.05.009.
doi: 10.1016/j.catena.2012.05.009.
Lin DL , Xia JY , Wan SQ , 2010. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytologist, 188(1): 187−198. DOI: 10.1111/j.1469-8137. 2010.03347.x.
doi: 10.1111/j.1469-8137. 2010.03347.x.
Liu YM , Xing ZS , Yang HY , 2017. Effect of biological soil crusts on microbial activity in soils of the Tengger Desert (China). Journal of Arid Environments, 144: 201−211. DOI: 10.1016/j.jaridenv.2017.04.003.
doi: 10.1016/j.jaridenv.2017.04.003.
Noy-Meir I, 1973. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4: 25−51. DOI: 10.1146/annurev.es.04.110173.000325.
doi: 10.1146/annurev.es.04.110173.000325.
Peng F , You QG , Xu MH , et al . , 2015. Effects of experimental warming on soil respiration and its components in an alpine meadow in the permafrost region of the Qinghai-Tibet Plateau. European Journal of Soil Science, 66(1): 145−154. DOI: 10.1111/ejss.12187.
doi: 10.1111/ejss.12187.
Reed SC , Coe KK , Sparks JP , et al . , 2012. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nature Climate Change, 2(10): 752−755. DOI: 10.1038/nclimate1596.
doi: 10.1038/nclimate1596.
Sponseller RA, 2007. Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Global Change Biology, 13(2): 426−436. DOI: 10.1111/j.1365-2486.2006.01307.x.
doi: 10.1111/j.1365-2486.2006.01307.x.
Su YG , Wu L , Zhang YM , 2012. Characteristics of carbon flux in two biologically crusted soils in the Gurbantunggut Desert, Northwestern China. CATENA, 96: 41−48. DOI: 10.10 16/j.catena.2012.04.003.
doi: 10.10 16/j.catena.2012.04.003.
Su YG , Wu L , Zhou ZB , et al . , 2013. Carbon flux in deserts depends on soil cover type: a case study in the Gurbantunggute desert, North China. Soil Biology and Biochemistry, 58: 332−340. DOI: 10.1016/j.soilbio.2012.12.006.
doi: 10.1016/j.soilbio.2012.12.006.
Thomas AD , Hoon SR , 2010. Carbon dioxide fluxes from biologically-crusted Kalahari Sands after simulated wetting. Journal of Arid Environments, 74(1): 131−139. DOI: 10. 1016/j.jaridenv.2009.07.005.
doi: 10. 1016/j.jaridenv.2009.07.005.
Wilske B , Burgheimer J , Karnieli A , et al . , 2008. The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev desert, Israel. Biogeosciences, 5(5): 1411−1423. DOI: 10.5194/bg-5-1411-2008.
doi: 10.5194/bg-5-1411-2008.
Wu L , Zhang YM , Zhang J , et al . , 2015. Precipitation intensity is the primary driver of moss crust-derived CO2 exchange: implications for soil C balance in a temperate desert of northwestern China. European Journal of Soil Biology, 67: 27−34. DOI: 10.1016/j.ejsobi.2015.01.003.
doi: 10.1016/j.ejsobi.2015.01.003.
Wu YS , Erdun H , Yin RP , et al . , 2013. Discussion on wind factor influencing the distribution of biological soil crusts on surface of sand dunes. Sciences in Cold and Arid Regions, 5(6): 739−744. DOI: 10.3724/SP.J.1226.2013.00739.
doi: 10.3724/SP.J.1226.2013.00739.
Xie YW , Chen FH , Qi JG , 2009. Past desertification processes of Minqin Oasis in arid China. International Journal of Sustainable Development & World Ecology, 16(4): 260−269. DOI: 10.1080/13504500903132309.
doi: 10.1080/13504500903132309.
Yu J , Kidron GJ , Pen-Mouratov S , et al . , 2012. Do development stages of biological soil crusts determine activity and functional diversity in a sand-dune ecosystem? Soil Biology and Biochemistry, 51: 66−72. DOI: /10.1016/j.soilbio. 2012.04.007.
doi: /10.1016/j.soilbio. 2012.04.007.
Zhao Y , Li XR , Zhang ZS , et al . , 2014. Biological soil crusts influence carbon release responses following rainfall in a temperate desert, northern China. Ecological Research, 29(5): 889−896. DOI: 10.1007/s11284-014-1177-7.
doi: 10.1007/s11284-014-1177-7.
Zhao Y , Zhang ZS , Hu YG , et al . , 2016. The seasonal and successional variations of carbon release from biological soil crust-covered soil. Journal of Arid Environments, 127: 148−153. DOI: 10.1016/j.jaridenv.2015.11.012
doi: 10.1016/j.jaridenv.2015.11.012
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] . [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436 -446 .