Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (1): 8192.doi: 10.3724/SP.J.1226.2019.00081
• • 上一篇
Increase in medium-size rainfall events will enhance the C-sequestration capacity of biological soil crusts
CuiHua Huang1,Fei Peng1,2,3,*(),Itaru Shibata3,Jun Luo1,Xian Xue1,Kinya Akashi2,3,Atsushi Tsunekawa2,3,Tao Wang1
- 1. Minqin Salinization Research Station, Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, Gansu 730000, China
2. International Platform for Dryland Research and Education, Tottori University, Koyama-Minami, Tottori 680-8550, Japan
3. Arid Land Research Center, Tottori University, Hamasaka, Tottori 680-0001, Japan
Austin AT , Yahdjian L , Stark JM , et al . , 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141(2): 221−235. DOI: 10.1007/s00442-004-15 19-1.
doi: 10.1007/s00442-004-15 19-1. |
|
Belnap J , Gillette DA , 1997. Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern Utah. Land Degradation & Development, 8(4): 355−362. DOI: 10.1002/ (SICI)1099-145X(199712)8:4<355::AID-LDR266>3.0.CO;2-H.
doi: 10.1002/ |
|
Belnap J , Lange OL , 2003. Biological soil crusts: structure, function, and management. Berlin, Heidelberg: Springer, pp. 272−276. DOI: 10.1007/978-3-642-56475-8.
doi: 10.1007/978-3-642-56475-8. |
|
Belnap J , Phillips SL , Miller ME , 2004. Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia, 141(2): 306−316. DOI: 10.1007/s00442-003-1438-6.
doi: 10.1007/s00442-003-1438-6. |
|
Bowker MA , Belnap J , Davidson DW , et al . , 2006. Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. Journal of Applied Ecology, 43(1): 152−163. DOI: 10.11 11/j.1365-2664.2006.01122.x.
doi: 10.11 11/j.1365-2664.2006.01122.x. |
|
Bowker MA , Eldridge DJ , Val J , et al . , 2013. Hydrology in a patterned landscape is co-engineered by soil-disturbing animals and biological crusts. Soil Biology and Biochemistry, 61: 14−22. DOI: 10.1016/j.soilbio.2013.02.002.
doi: 10.1016/j.soilbio.2013.02.002. |
|
Bowling DR , Grote EE , Belnap J , 2011. Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States. Journal of Geophysical Research: Biogeosciences, 116(G3): G03028. DOI: 10.1029/2011JG001643.
doi: 10.1029/2011JG001643. |
|
Büdel B , Williams WJ , Reichenberger H , 2018. Annual net primary productivity of a cyanobacteria-dominated biological soil crust in the Gulf savannah, Queensland, Australia. Biogeosciences,15(2): 491−505. DOI: 10.5194/bg-15-491-2018.
doi: 10.5194/bg-15-491-2018. |
|
Chamizo S , Cantón Y , Lazaro R , et al . , 2013. The role of biological soil crusts in soil moisture dynamics in two semiarid ecosystems with contrasting soil textures. Journal of Hydrology, 489: 74−84. DOI: 10.1016/j.jhydrol.2013.02.051.
doi: 10.1016/j.jhydrol.2013.02.051. |
|
Coe KK , Belnap J , Sparks JP , 2012. Precipitation-driven carbon balance controls survivorship of desert biocrust mosses. Ecology, 93(7): 1626−1636. DOI: 10.1890/11-2247.1.
doi: 10.1890/11-2247.1. |
|
Darby BJ , Neher DA , Belnap J , 2010. Impact of biological soil crusts and desert plants on soil microfaunal community composition. Plant and Soil, 328(1−2): 421−431. DOI: 10.1007/s11104-009-0122-y.
doi: 10.1007/s11104-009-0122-y. |
|
Dong ZB , Man DQ , Luo WY , et al . , 2010. Horizontal aeolian sediment flux in the Minqin area, a major source of Chinese dust storms. Geomorphology, 116(1−2): 58−66. DOI: 10.10 16/j.geomorph.2009.10.008.
doi: 10.10 16/j.geomorph.2009.10.008. |
|
Du JH , Yan P , Ding LG , et al . , 2009. Soil physical and chemical properties of Nitraria tangutorun nebkhas surface at different development stages in Minqin oasis. Journal of Desert Research, 29(2): 248−253. | |
Du JH , Yan P , Dong YX , 2011. Precipitation characteristics and its impact on vegetation restoration in Minqin County, Gansu Province, northwest China. International Journal of Climatology, 31(8): 1153−1165. DOI: 10.1002/joc.2122.
doi: 10.1002/joc.2122. |
|
Fischer T , Veste M , 2018. Carbon cycling of biological soil crusts mirrors ecological maturity along a Central European inland dune catena. CATENA, 160: 68−75. DOI: 10.1016/j.catena.2017.09.004.
doi: 10.1016/j.catena.2017.09.004. |
|
Funk FA , Loydi A , Peter G , 2014. Effects of biological soil crusts and drought on emergence and survival of a Patagonian perennial grass in the Monte of Argentina. Journal of Arid Land, 6(6): 735−741. DOI: 10.1007/s40333-014-0022-8.
doi: 10.1007/s40333-014-0022-8. |
|
Grote EE , Belnap J , Housman DC , et al . , 2010. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Global Change Biology, 16(10): 2763−2774. DOI: 10.1111/j.1365-2486.2010.02201.x.
doi: 10.1111/j.1365-2486.2010.02201.x. |
|
Huang L , Zhang ZS , Li XR , 2014. Carbon fixation and its influence factors of biological soil crusts in a revegetated area of the Tengger Desert, northern China. Journal of Arid Land, 6(6): 725−734. DOI: 10.1007/s40333-014-0027-3.
doi: 10.1007/s40333-014-0027-3. |
|
Huxman TE , Snyder KA , Tissue D , et al . , 2004. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141(2): 254−268. DOI: 10.1007/s00442-004-16 82-4.
doi: 10.1007/s00442-004-16 82-4. |
|
Jeffries DL , Link SO , Klopatek JM , 1993. CO2 fluxes of cryptogamic crusts: II. Response to dehydration. New Phytologist, 125(2): 391−396. DOI: 10.1111/j.1469-8137.1993.tb03891.x.
doi: 10.1111/j.1469-8137.1993.tb03891.x. |
|
Jia RL , Li XR , Liu LC , et al . , 2008. Responses of biological soil crusts to sand burial in a revegetated area of the Tengger Desert, Northern China. Soil Biology and Biochemistry, 40(11): 2827−2834. DOI: 10.1016/j.soilbio.2008.07.029.
doi: 10.1016/j.soilbio.2008.07.029. |
|
Jia RL , Li XR , Liu LC , et al . , 2012. Differential wind tolerance of soil crust mosses explains their micro-distribution in nature. Soil Biology and Biochemistry, 45: 31−39. DOI: 10.10 16/j.soilbio.2011.09.021.
doi: 10.10 16/j.soilbio.2011.09.021. |
|
Jia RL , Li XR , Liu LC , et al . , 2014. Effects of sand burial on dew deposition on moss soil crust in a revegetated area of the Tennger Desert, Northern China. Journal of Hydrology, 519: 2341−2349. DOI: 10.1016/j.jhydrol.2014.10.031.
doi: 10.1016/j.jhydrol.2014.10.031. |
|
Lange OL , Büdel B , Meyer A , et al . , 1993. Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. The Lichenologist, 25(2): 175−189. DOI: 10.1006/lich.1993.1025.
doi: 10.1006/lich.1993.1025. |
|
Lange OL , Meyer A , Zellner H , et al . , 1994. Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert. Functional Ecology, 8(2): 253−264. DOI: 10.2307/2389909.
doi: 10.2307/2389909. |
|
Lange OL , Belnap J , Reichenberger H , 1998. Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Functional Ecology, 12(2): 195−202. DOI:10.1046/j.1365-243 5.1998.00192.x.
doi: 10.1046/j.1365-243 5.1998.00192.x. |
|
Lange OL, 2001. Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds.). Biological Soil Crusts: Structure, Function, and Management. Berlin: Springer, pp. 77−84. DOI: 10.1007/978-3-642-5647 5-8_18.
doi: 10.1007/978-3-642-5647 5-8_18. |
|
Li XR , He MZ , Zerbe S , et al . , 2010. Micro-geomorphology determines community structure of biological soil crusts at small scales. Earth Surface Processes and Landforms, 35(8): 932−940. DOI: 10.1002/esp.1963.
doi: 10.1002/esp.1963. |
|
Li XR , Zhang P , Su YG , et al . , 2012. Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: a four-year field study. CATENA, 97: 119−126. DOI: 10.1016/j.catena.2012.05.009.
doi: 10.1016/j.catena.2012.05.009. |
|
Lin DL , Xia JY , Wan SQ , 2010. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytologist, 188(1): 187−198. DOI: 10.1111/j.1469-8137. 2010.03347.x.
doi: 10.1111/j.1469-8137. 2010.03347.x. |
|
Liu YM , Xing ZS , Yang HY , 2017. Effect of biological soil crusts on microbial activity in soils of the Tengger Desert (China). Journal of Arid Environments, 144: 201−211. DOI: 10.1016/j.jaridenv.2017.04.003.
doi: 10.1016/j.jaridenv.2017.04.003. |
|
Noy-Meir I, 1973. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4: 25−51. DOI: 10.1146/annurev.es.04.110173.000325.
doi: 10.1146/annurev.es.04.110173.000325. |
|
Peng F , You QG , Xu MH , et al . , 2015. Effects of experimental warming on soil respiration and its components in an alpine meadow in the permafrost region of the Qinghai-Tibet Plateau. European Journal of Soil Science, 66(1): 145−154. DOI: 10.1111/ejss.12187.
doi: 10.1111/ejss.12187. |
|
Reed SC , Coe KK , Sparks JP , et al . , 2012. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nature Climate Change, 2(10): 752−755. DOI: 10.1038/nclimate1596.
doi: 10.1038/nclimate1596. |
|
Sponseller RA, 2007. Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Global Change Biology, 13(2): 426−436. DOI: 10.1111/j.1365-2486.2006.01307.x.
doi: 10.1111/j.1365-2486.2006.01307.x. |
|
Su YG , Wu L , Zhang YM , 2012. Characteristics of carbon flux in two biologically crusted soils in the Gurbantunggut Desert, Northwestern China. CATENA, 96: 41−48. DOI: 10.10 16/j.catena.2012.04.003.
doi: 10.10 16/j.catena.2012.04.003. |
|
Su YG , Wu L , Zhou ZB , et al . , 2013. Carbon flux in deserts depends on soil cover type: a case study in the Gurbantunggute desert, North China. Soil Biology and Biochemistry, 58: 332−340. DOI: 10.1016/j.soilbio.2012.12.006.
doi: 10.1016/j.soilbio.2012.12.006. |
|
Thomas AD , Hoon SR , 2010. Carbon dioxide fluxes from biologically-crusted Kalahari Sands after simulated wetting. Journal of Arid Environments, 74(1): 131−139. DOI: 10. 1016/j.jaridenv.2009.07.005.
doi: 10. 1016/j.jaridenv.2009.07.005. |
|
Wilske B , Burgheimer J , Karnieli A , et al . , 2008. The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev desert, Israel. Biogeosciences, 5(5): 1411−1423. DOI: 10.5194/bg-5-1411-2008.
doi: 10.5194/bg-5-1411-2008. |
|
Wu L , Zhang YM , Zhang J , et al . , 2015. Precipitation intensity is the primary driver of moss crust-derived CO2 exchange: implications for soil C balance in a temperate desert of northwestern China. European Journal of Soil Biology, 67: 27−34. DOI: 10.1016/j.ejsobi.2015.01.003.
doi: 10.1016/j.ejsobi.2015.01.003. |
|
Wu YS , Erdun H , Yin RP , et al . , 2013. Discussion on wind factor influencing the distribution of biological soil crusts on surface of sand dunes. Sciences in Cold and Arid Regions, 5(6): 739−744. DOI: 10.3724/SP.J.1226.2013.00739.
doi: 10.3724/SP.J.1226.2013.00739. |
|
Xie YW , Chen FH , Qi JG , 2009. Past desertification processes of Minqin Oasis in arid China. International Journal of Sustainable Development & World Ecology, 16(4): 260−269. DOI: 10.1080/13504500903132309.
doi: 10.1080/13504500903132309. |
|
Yu J , Kidron GJ , Pen-Mouratov S , et al . , 2012. Do development stages of biological soil crusts determine activity and functional diversity in a sand-dune ecosystem? Soil Biology and Biochemistry, 51: 66−72. DOI: /10.1016/j.soilbio. 2012.04.007.
doi: /10.1016/j.soilbio. 2012.04.007. |
|
Zhao Y , Li XR , Zhang ZS , et al . , 2014. Biological soil crusts influence carbon release responses following rainfall in a temperate desert, northern China. Ecological Research, 29(5): 889−896. DOI: 10.1007/s11284-014-1177-7.
doi: 10.1007/s11284-014-1177-7. |
|
Zhao Y , Zhang ZS , Hu YG , et al . , 2016. The seasonal and successional variations of carbon release from biological soil crust-covered soil. Journal of Arid Environments, 127: 148−153. DOI: 10.1016/j.jaridenv.2015.11.012
doi: 10.1016/j.jaridenv.2015.11.012 |
No related articles found! |