Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (4): 244-258.doi: 10.1016/j.rcar.2022.09.003.

Previous Articles    

Thermal-Hydro-Mechanical coupled analysis of unsaturated frost susceptible soils

YuWei Wu1,Tatsuya Ishikawa2()   

  1. 1.Graduate School of Engineering, Hokkaido University, Hokkaido 060-8628, Japan
    2.Faculty of Engineering, Hokkaido University, Hokkaido 060-8628, Japan
  • Received:2021-09-03 Accepted:2022-03-28 Online:2022-08-31 Published:2022-09-30
  • Contact: Tatsuya Ishikawa E-mail:t-ishika@eng.hokudai.ac.jp
  • Supported by:
    Grant-in-Aids for Scientific Research(16H02360);from the Japan Society for the Promotion of Science (JSPS) KAKENHI

Abstract:

Damage caused by frost heave leads to costly maintenance in cold regions, like Hokkaido, Japan. Therefore, the study of the frost mechanism with experimental and numerical methods has been of great interest. Numerous models have been developed to describe the freezing process of saturated soil, which differs from the partially saturated conditions in the field. In fact, most subsurface soils are unsaturated. The freezing process of partially saturated soils is more complex than saturated soils, as the governing equations show strongly nonlinear characteristics. This study proposes a thermo-hydro-mechanical coupled model considering the heat transfer, water infiltration, and deformation of partially saturated soil to reproduce the freezing process of partially saturated frost susceptible soils distributed in Hokkaido. This model better considers the water-ice phase change and soil freezing characteristic curve (SFCC) during freezing under field conditions. The results from the multiphysics simulations agree well with the frost heave and water migration data from frost heave tests of Touryo soil and Fujinomori soil. In addition, this study discussed the influence of the various factors on frost heave amount, including temperature gradients, overburden pressures, water supply conditions, cooling rates, and initial saturation. The simulation results indicate that the frost heave ratio is proportional to the initial degree of saturation and is inversely proportional to the cooling rate and overburden pressure.

Moreover, simulation under the open system generates much more frost heave than under the closed system. Finally, the main features of the proposed model are revealed by simulating a closed-system frost heave test. The simulation results indicate that the proposed model adequately captures the coupling characteristics of water and ice redistribution, temperature development, hydraulic conductivity, and suction in the freezing process. Together with the decreased hydraulic conductivity, the increased suction controls the water flow in the freezing zone. The inflow water driven by cryogenic suction gradient feeds the ice formation, leads to a rapid increase in total water content, expanding the voids that exceed the initial porosity and contributing to the frost heave.

Key words: frost heave, unsaturated soil, Thermal-Hydro-Mechanical (THM) coupled model, Finite Element Method (FEM).

Figure 1

Schematic interpretation of THM coupling"

Figure 2

Model domain, mesh and boundary conditions for frost heave simulations"

Table 1

List of input parameters"

Abbreviation/symbolParameter/variableValueUnits
Touryo soilFujinomori soilTomakomai soil
CsVolumetric heat capacity of the soil particles1.8E61.3E68.59E5J/(m3?K)
λsThermal conductivity of the soil mixture1.610.831.61W/(m?K)
χMaterial parameters accounting for the particle shape effect0.750.750.75W/(m?K)
ηMaterial parameters accounting for the particle shape effect1.21.21.2
LfLatent heat of fusion (liquid water)334,000334,000334,000J/kg
ρdDry density of soil particles1,4001,4601,200kg/m3
gGravitational acceleration9.819.819.81m/s2
nPorosity0.450.4550.551
TmFinal freezing temperature at atmospheric pressure272.95272.90273.05K
αvgVan-Genuchten-Mualem fitting parameter93.21.90425.02M/Pa
λvgVan-Genuchten-Muale fitting parameter1.5961.8651.54
SsSaturated degree of saturation96.7%100%95.1%
SrResidual degree of saturation37.8%18.5%33.5%
ksSaturated water hydraulic conductivity1E-85E-102.36E-7m/s
αTuThermal expansion coefficient1.2E-51.2E-51.2E-6K-1
EYoung's modulus of soil4012.58.5MPa
HModulus related to matric potential7,6537,6537,653m
υPoisson's ratio0.40.330.4

Figure 3

Frost heave test apparatus: (a) general view; (b) temperature measurement locations within a specimen"

Figure 4

Comparison between the numerical and experimental results of frost heave tests for Touryo soil"

Figure 5

Comparison between the numerical and experimental results of frost heave tests for Fujinomori soil"

Table 2

Experimental conditions"

NumberWater supply systemσob?(kPa)U (K/h)S0?
Tomakomai soilTouryo soilTomakomai soilTouryo soilTomakomai soilTouryo soil
1Open system5.05.00.20.295.0%81.7%
2Open system10.010.00.20.295.0%76.1%
3Open system15.010.00.20.495.0%69.0%
4Open system10.010.00.10.895.0%70.0%
5Open system10.050.00.20.269.9%81.0%
6Open system10.0100.00.20.280.2%92.7%
7Open system10.0200.00.20.295.0%82.7%
8Closed system5.00.00.20.295.0%98.9%
9Closed system10.05.00.20.295.0%98.9%
10Closed system15.010.00.20.295.0%98.9%
11Closed system10.010.00.20.266.1%98.9%
12Closed system10.010.00.20.279.0%98.9%

Figure 6

Influence of overburden pressure on frost heave in closed-system tests"

Figure 7

Influence of initial degree of saturation on frost heave in closed-system tests"

Figure 8

Influence of overburden pressure on frost heave in open-system tests"

Figure 9

Influence of cooling rate frost heave in open-system tests"

Figure 10

Influence of initial degree of saturation on frost heave in opened-system tests"

Figure 11

Evolution of volumetric water and ice content and temperature with freezing time"

Figure 12

Development of the suction and relative hydraulic conductivity profiles with freezing time"

Figure 13

Evolution of the volumetric unfrozen water and ice content profile and frost heave ratio with freezing time"

Anderson DM, Tice AR, McKim HL, 1973. The unfrozen water and the apparent specific heat capacity of frozen soils. Second International Conference on Permafrost, Yakutsk, USSR. North American Contribution. pp. 289-295.
Biot MA, 1941. General theory of three‐dimensional consolidation. Journal of Applied Physics, 12(2): 155-164. DOI: 10. 1063/1.1712886 .
doi: 10. 1063/1.1712886
Celia MA, Binning P, 1992. A mass conservative numerical solution for two‐phase flow in porous media with application to unsaturated flow. Water Resources Research, 28(10): 2819-2828. DOI: 10.1029/92WR01488 .
doi: 10.1029/92WR01488
Côté J, Konrad MA, 2005. generalized thermal conductivity model for soils and construction materials. Canadian Geotechnical Journal, 42(2): 443-458. DOI: 10.1016/j.jmps. 2005.04.001 .
doi: 10.1016/j.jmps. 2005.04.001
Coussy O, 2005. Poromechanics of freezing materials. Journal of the Mechanics and Physics of Solids, 53(8): 1689-1718. DOI: 10.1016/j.jmps.2005.04.001 .
doi: 10.1016/j.jmps.2005.04.001
Coussy O, Monteiro PJM, 2008. Poroelastic model for concrete exposed to freezing temperatures. Cement and Concrete Research, 38(1): 40-48. DOI: 10.1016/j.cemconres. 2007.06.006 .
doi: 10.1016/j.cemconres. 2007.06.006
Dall'Amico M, Endrizzi S, Gruber S, et al., 2011. A robust and energy-conserving model of freezing variably-saturated soil. The Cryosphere, 5(2): 469-484. DOI: 10.5194/tc-5-469-2011 .
doi: 10.5194/tc-5-469-2011
De Vries DA, 1958. Simultaneous transfer of heat and moisture in porous media. Eos, Transactions American Geophysical Union, 39(5): 909-916. DOI: 10.1016/0735-1933(90)90048-O .
doi: 10.1016/0735-1933(90)90048-O
De Vries DA, 1963. Thermal properties of soils. In: Van Wijk WR(ed.). Physics of the plant environment. Amsterdam, pp. 210-235.
Fayer MJ, 2000. UNSAT-H version 3.0: Unsaturated Soil Water and Heat Flow Model Theory, User Manual, and Examples. No. 820201000. Pacific Northwest National Laboratory, Richland, WA (U.S.).
Flerchinger GN, Saxton KE, 1989. Simultaneous heat and water model of a freezing snow-residue-soil system I. Theory and Development. Transactions of the American Society of Agricultural Engineers, 32(2): 565-571. DOI: 10.13031/2013.31040 .
doi: 10.13031/2013.31040
Fredlund DG, Hendry R, 1993. Soil mechanics for Unsaturated Soils. John Wiley and Sons, New York City, pp. 492.
Gilpin RR, 1980. A model for the prediction of ice lensing and frost heave in soils. Water Resources Research, 16(5): 918-930. DOI: 10.1029/WR016i005p00918 .
doi: 10.1029/WR016i005p00918
Guymon GL, Hromadka ITV, Berg RL, 1980. A one-dimensional frost heave model based upon simulation of simultaneous heat and water flux. Cold Regions Science and Technology, 3(2-3): 253-262. DOI: 10.1016/0165-232X(80)90032-4 .
doi: 10.1016/0165-232X(80)90032-4
Guymon GL, Hromadka TV, Berg RL, 1984. Two-dimensional model of coupled heat and moisture transport in frost-heaving soils. Journal of Energy Resources Technology, 106: 336-343. DOI: 10.1115/1.3231062 .
doi: 10.1115/1.3231062
Guymon GL, James NL, 1974. A coupled heat and moisture transport model for arctic soils. Water Resources Research, 10(5): 995-1001. DOI: 10.1029/WR010i005p00995 .
doi: 10.1029/WR010i005p00995
Guymond GL, Berg RL, Hromadka TV, 1993. Mathematical model of frost heave and thaw settlements in pavements. USA Cold Regions Research and Engineering Laboratory, CRREL Report 93-2.
Hansson K, Šimunek J, Mizoguchi M, et al., 2004. Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications. Vadose Zone Journal, 3(2): 693-704. DOI: 10.2113/3.2.693 .
doi: 10.2113/3.2.693
Harlan RL, 1973. Analysis of coupled heat‐fluid transport in partially frozen soil. Water Resources Research, 9(5): 1314-1323. DOI: 10.1029/WR009i005p01314 .
doi: 10.1029/WR009i005p01314
Hermansson Å, Guthrie WS, 2005. Frost heave and water uptake rates in silty soil subject to variable water table height during freezing. Cold Regions Science and Technology, 43(3): 128-139. DOI: 10.1016/j.coldregions.2005.03.003 .
doi: 10.1016/j.coldregions.2005.03.003
Ishikawa T, Tokoro T, Akagawa S, 2015. Frost Heave Behavior of Unsaturated Soils Under Low Overburden Pressure and Its Estimation. Proceedings of GEO Quebec.
Ishikawa T, Tokoro T, Miura S, 2016. Influence of freeze-thaw action on hydraulic behavior of unsaturated volcanic coarse-grained soils. Soils and Foundations, 56(5): 790-804. DOI: 10.1016/j.sandf.2016.08.005 .
doi: 10.1016/j.sandf.2016.08.005
Jame YM, 1976. Heat and mass transfer in freezing unsaturated soil in a closed system. Proceedings of 2nd Conference on Soil Water Problems in Cold Regions, Edmonton, Alberta. pp. 46-62.
Jame YW, Norum DI, 1973. Phase composition of a partially frozen soil. Agricultural Engineering Department, University of Saskatchewan. pp. 17.
Jansson PE, 2012. CoupleModel: model use, calibration, and validation. Transactions of the ASABE, 55(4): 1337-1344. DOI: 10.13031/2013.42248 .
doi: 10.13031/2013.42248
Konrad JM, 2005. Estimation of the segregation potential of fine-grained soils using the frost heave response of two reference soils. Canadian Geotechnical Journal, 42(1): 38-50. DOI: 10.1139/t04-080 .
doi: 10.1139/t04-080
Konrad JM, Morgenstern NR, 1980. A mechanistic theory of ice lens formation in fine-grained soils. Canadian Geotechnical Journal, 17(4): 473-486. DOI: 10.1139/t80-056 .
doi: 10.1139/t80-056
Konrad JM, Morgenstern NR, 1981. The segregation potential of a freezing soil. Canadian Geotechnical Journal, 18(4): 482-491. DOI: 10.1139/t81-059 .
doi: 10.1139/t81-059
Konrad JM, Morgenstern NR, 1982. Prediction of frost heave in the laboratory during transient freezing. Canadian Geotechnical Journal, 19(3): 250-259. DOI: 10.1139/t82-032 .
doi: 10.1139/t82-032
Konrad JM, Nixon JF, 1994. Frost heave characteristics of a clayey silt subjected to small temperature gradients. Cold Regions Science and Technology, 22(3): 299-310. DOI: 10.1016/0165-232X(94)90007-8 .
doi: 10.1016/0165-232X(94)90007-8
Lai YM, Pei WS, Zhang MY, et al., 2014. Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil. International Journal of Heat and Mass Transfer, 78: 805-819. DOI: 10.1016/j.ijheatmasstransfer.2014.07.035 .
doi: 10.1016/j.ijheatmasstransfer.2014.07.035
Liu Q, Wang Z, Li Z, et al., 2020. Transversely isotropic frost heave modeling with heat-moisture-deformation coupling. Acta Geotechnica, 15(5): 1273-1287. DOI: 10.1007/s11440-019-00774-1 .
doi: 10.1007/s11440-019-00774-1
Liu Z, 2018. Multiphysics in Porous Materials. Multiphysics in Porous Materials. Springer, Cham, Cham, Switzerland. pp. 397.
Luo B, Ishikawa T, Tokoro T, et al., 2017. Coupled Thermo-Hydro-Mechanical Analysis of Freeze-Thaw Behavior of Pavement Structure over a Box Culvert. Transportation Research Record, 2656(1): 12-22. DOI: 10.3141/2656-02 .
doi: 10.3141/2656-02
Michalowski RL, 1993. A constitutive model of saturated soils for frost heave simulations. Cold Regions Science and Technology, 22(1): 47-63. DOI: 10.1016/0165-232X(93)90045-A .
doi: 10.1016/0165-232X(93)90045-A
Mu S, Ladanyi B, 1987. Modelling of coupled heat, moisture and stress field in freezing soil. Cold Regions Science and Technology, 14(3): 237-246. DOI: 10.1016/0165-232X(87)90016-4 .
doi: 10.1016/0165-232X(87)90016-4
Mualem Y, 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3): 513-522. DOI: 10.1029/WR012i003p00513 .
doi: 10.1029/WR012i003p00513
Nakamura D, Suzuki T, Goto T, et al., 2011. Changes in the permeability coefficient and the void ratio of compacted soil by the effect of freeze-thaw cycles. Journal of Japan Society of Civil Engineers, Series C (Geosphere Engineering), 67(2): 264-275. DOI: 10.2208/jscejge.67.264 .
doi: 10.2208/jscejge.67.264
Nassar IN, Horton R, 1989. Water transport in unsaturated nonisothermal salty soil: II. Theoretical development. Soil Science Society of America Journal, 53(5): 1330-1337. DOI: 10.2136/sssaj1989.03615995005300050005x .
doi: 10.2136/sssaj1989.03615995005300050005x
Nassar IN, Horton R, 1992. Simultaneous transfer of heat, water, and solute in porous media: I. Theoretical development. Soil Science Society of America Journal, 56(5): 1350-1356. DOI: 10.2136/sssaj1992.03615995005600050004x .
doi: 10.2136/sssaj1992.03615995005600050004x
Neaupane KM, Yamabe T, Yoshinaka R, 1999. Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock. International Journal of Rock Mechanics and Mining Sciences, 36(5): 563-580. DOI: 10. 1016/S0148-9062(99)00026-1 .
doi: 10. 1016/S0148-9062(99)00026-1
Nishimura S, Gens A, Olivella S, et al., 2009. THM-coupled finite element analysis of frozen soil: formulation and application. Géotechnique, 59(3): 159-171. DOI: 10.1680/geot. 2009.59.3.159 .
doi: 10.1680/geot. 2009.59.3.159
Nixon JF, 1991. Discrete ice lens theory for frost heave in soils. Canadian Geotechnical Journal, 28(6): 843-859. DOI: 10.1139/t91-102 .
doi: 10.1139/t91-102
Nixon JF, 1992. Discrete ice lens theory for frost heave beneath pipelines. Canadian Geotechnical Journal, 29(3): 487-497. DOI: 10.1139/t92-053 .
doi: 10.1139/t92-053
Noborio K, McInnes KJ, Heilman JL, 1996. Two‐dimensional model for water, heat, and solute transport in furrow‐irrigated soil: II. Field evaluation. Soil Science Society of America Journal, 60(4): 1010-1021. DOI: 10.2136/sssaj1996.03615995006000040008x .
doi: 10.2136/sssaj1996.03615995006000040008x
O'Neill K, Miller RD, 1985. Exploration of a rigid ice model of frost heave. Water Resources Research, 21(3): 281-296. DOI: 10.1029/WR021i003p00281 .
doi: 10.1029/WR021i003p00281
Rosenberg NJ, Blad BL, Verma SB, 1983. Microclimate: the Biological Environment. John Wiley and Sons. pp. 95-110.
Shoop SA, Susan RB, 1997. Moisture migration during freeze and thaw of unsaturated soils: modeling and large scale experiments. Cold Regions Science and Technology, 25(1): 33-45. DOI: 10.1016/S0165-232X(96)00015-8 .
doi: 10.1016/S0165-232X(96)00015-8
Šimůnek J, Van Genuchten MT, Šejna, M, 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone Journal, 15(7), 25. DOI: 10. 2136/vzj2016.04.0033 .
doi: 10. 2136/vzj2016.04.0033
Spaans EJ, Baker JM, 1995. Examining the use of time domain reflectometry for measuring liquid water content in frozen soil. Water Resources Research, 31(12) : 2917-2925. DOI: 10.1029/95WR02769 .
doi: 10.1029/95WR02769
Stuurop JC, Van der Zee SEM, Voss, CI., et al., 2021. Simulating water and heat transport with freezing and cryosuction in unsaturated soil: Comparing an empirical, semi-empirical and physically-based approach. Advances in Water Resources, 149: 103846. DOI: 10.1016/j.advwatres.2021. 103846 .
doi: 10.1016/j.advwatres.2021. 103846
Taylor GS, Luthin JN, 1978. A model for coupled heat and moisture transfer during soil freezing. Canadian Geotechnical Journal, 15(4): 548-555. DOI: 10.1139/t79-091 .
doi: 10.1139/t79-091
Thomas HR, 1985. Modelling two‐dimensional heat and moisture transfer in unsaturated soils, including gravity effects. International Journal for Numerical and Analytical Methods in Geomechanics, 9(6): 573-588. DOI: 10.1002/nag. 1610090606 .
doi: 10.1002/nag. 1610090606
Thomas HR, Cleall P, Li YC, et al., 2009. Modelling of cryogenic processes in permafrost and seasonally frozen soils. Geotechnique, 59(3): 173-184. DOI: 10.1680/geot.2009. 59.3.173 .
doi: 10.1680/geot.2009. 59.3.173
Thomas HR, He Y, 1995. Analysis of coupled heat, moisture and air transfer in a deformable unsaturated soil. Geotechnique, 45(4): 677-689. DOI: 10.1680/geot.1995.45.4.677 .
doi: 10.1680/geot.1995.45.4.677
Thomas HR, King SD, 1991.Coupled temperature/capillary potential variations in unsaturated soil. Journal of Engineering Mechanics, 117(11): 2475-2491. DOI: 10.1061/(ASCE)0733-9399(1991)117:11(2475 ).
doi: 10.1061/(ASCE)0733-9399(1991)117:11(2475
Tokoro T, Ishikawa T, Akagawa S, 2016. Temperature dependency of permeability coefficient of frozen soil. In Proceedings of GEO Vancouver, British Columbia, Canada.
Ueda Y, Ohrai T, Tamura T, 2005. Study on the Frost Heave Ratios in Triaxial Directions of Soil Based on Effective Stresses Consideration. Proceedings-Japan Society Of Civil Engineers. Dotoku Gakkai, pp:67-78.
Yin X, Liu E, Song B,et al., 2018. Numerical analysis of coupled liquid water, vapor, stress and heat transport in unsaturated freezing soil. Cold Regions Science and Technology, 155: 20-28. DOI: 10.1016/j.coldregions.2018.07.008 .
doi: 10.1016/j.coldregions.2018.07.008
Yu H, Li S, Liu Y, et al., 2011. Study on temperature distribution due to freezing and thawing at the Fengman concrete gravity dam. Thermal Science 15(): 27-32. DOI: 10.2298/TSCI11S1027Y .
doi: 10.2298/TSCI11S1027Y
Yu L, Zeng Y, Su Z, 2020. Understanding the mass, momentum, and energy transfer in the frozen soil with three levels of model complexities. Hydrology and Earth System Sciences, 24(10): 4813-4830. DOI: 10.5194/hess-24-4813-2020 .
doi: 10.5194/hess-24-4813-2020
Zhang S, Teng J, He Z, et al., 2016. Importance of vapor flow in unsaturated freezing soil: a numerical study. Cold Regions Science and Technology, 126: 1-9. DOI: 10.1016/j.coldregions.2016.02.011 .
doi: 10.1016/j.coldregions.2016.02.011
Zhao Y, Nishimura T, Hill R, et al., 2013. Determining hydraulic conductivity for air‐filled porosity in an unsaturated frozen soil by the multistep outflow method. Vadose Zone Journal, 12(1): 1-10. DOI: 10.2136/vzj2012.0061 .
doi: 10.2136/vzj2012.0061
Zheng D, Rogier V, Su Z, et al., 2021. Development of the Hydrus-1D Freezing module and its application in simulating the coupled movement of water, vapor, and heat. Journal of Hydrology, 598: 126250. DOI: 10.1016/j.jhydrol.2021. 126250 .
doi: 10.1016/j.jhydrol.2021. 126250
Zhou J, Li D, 2012. Numerical analysis of coupled water, heat and stress in saturated freezing soil. Cold Regions Science and Technology, 72: 43-49. DOI: 10.1016/j.coldregions. 2011.11.006 .
doi: 10.1016/j.coldregions. 2011.11.006
[1] XuFeng Lu,Feng Zhang,KangWei Tang,DeCheng Feng. Field monitoring of differential frost heave in widened highway subgrade [J]. Sciences in Cold and Arid Regions, 2021, 13(5): 408-418.
[2] GuoYu Li,HongYuan Jing,Nikolay Volkov,Wei Ma,PengChao Chen. Centrifuge model test on performance of thermosyphon cooled sandbags stabilizing warm oil pipeline buried in permafrost [J]. Sciences in Cold and Arid Regions, 2021, 13(3): 234-255.
[3] Shuang Jia,BoWen Tai,ShouChen Qi,Lei Li,Tao Chen. Summary of research on frost heave for subgrade in seasonal frozen ground [J]. Sciences in Cold and Arid Regions, 2021, 13(3): 195-205.
[4] DaiChao Sheng. Frost susceptibility of soils―A confusing concept that can misguide geotechnical design in cold regions [J]. Sciences in Cold and Arid Regions, 2021, 13(2): 87-94.
[5] Satoshi Akagawa. Artificially frozen ground and related engineering technology in Japan [J]. Sciences in Cold and Arid Regions, 2021, 13(2): 77-86.
[6] Tao Wen,Sai Ying,FengXi Zhou. Calculation of salt-frost heave of sulfate saline soil due to long-term freeze-thaw cycles [J]. Sciences in Cold and Arid Regions, 2020, 12(5): 284-294.
[7] Lin Geng, XianZhang Ling, Liang Tang, Jun Luo, XiuLi Du. A mathematical approach to evaluate maximum frost heave of unsaturated silty clay [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 438-446.
[8] LiHui Luo, Wei Ma, YanLi Zhuang, ZhongQiong Zhang. Deformation monitoring and analysis at two frost mounds during freeze–thaw cycles along the Qinghai–Tibet Engineering Corridor [J]. Sciences in Cold and Arid Regions, 2017, 9(4): 378-383.
[9] HongYan Ma, Feng Zhang, DeCheng Feng, KangWei Tang. Frost-heave properties of saturated compacted silty clay under one-side freezing condition [J]. Sciences in Cold and Arid Regions, 2017, 9(3): 273-279.
[10] ZuoYue He, JiDong Teng, Sheng Zhang, DaiChao Sheng. Moisture transfer and phase change in unsaturated soils: an experimental study of two types of canopy effect [J]. Sciences in Cold and Arid Regions, 2017, 9(3): 243-249.
[11] Bin Luo, Hao Lai, Tatsuya Ishikawa, Tetsuya Tokoro. Frost heave analysis of ballasted track above box culvert and its influence on train vibration [J]. Sciences in Cold and Arid Regions, 2017, 9(3): 229-235.
[12] GuoTao Yang, ZaiTian Ke, DeGou Cai, HongYe Yan, JianPing Yao, Feng Chen. Investigation of monitoring system for high-speed railway subgrade frost heave [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 528-533.
[13] HongYan Ma, Feng Zhang, DeCheng Feng, Bo Lin. Determination of allowable subgrade frost heave with the pavement roughness index in numerical analysis [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 587-593.
[14] QingZhi Wang, BoWen Tai, ZhenYa Liu, JianKun Liu. Study on the sunny-shady slope effect on the subgrade of a high-speed railway in a seasonal frozen region [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 513-519.
[15] TianLiang Wang, ZuRun Yue, TieCheng Sun, JinChuang Hua. Influence of fines content on the anti-frost properties of coarse-grained soil [J]. Sciences in Cold and Arid Regions, 2015, 7(4): 407-413.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!