Sciences in Cold and Arid Regions ›› 2018, Vol. 10 ›› Issue (1): 27–37.doi: 10.3724/SP.J.1226.2018.00027

• • 上一篇    下一篇

Precipitation isotopes in the Tianshan Mountains as a key to water cycle in arid central Asia

MingJun Zhang1, ShengJie Wang1,2   

  1. 1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou, Gansu 730070, China;
    2. State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • 收稿日期:2017-12-11 出版日期:2018-02-01 发布日期:2018-11-23
  • 通讯作者: ShengJie Wang, geowang@126.com E-mail:geowang@126.com
  • 基金资助:
    This research is supported by the National Natural Science Foundation of China (Nos. 41771035 and 41161012), Northwest Normal University (No. NWNU-LKQN-15-8) and State Key Laboratory of Cryospheric Sciences (No. SKLCS-OP-2017-04).

Precipitation isotopes in the Tianshan Mountains as a key to water cycle in arid central Asia

MingJun Zhang1, ShengJie Wang1,2   

  1. 1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou, Gansu 730070, China;
    2. State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2017-12-11 Online:2018-02-01 Published:2018-11-23
  • Contact: ShengJie Wang, geowang@126.com E-mail:geowang@126.com
  • Supported by:
    This research is supported by the National Natural Science Foundation of China (Nos. 41771035 and 41161012), Northwest Normal University (No. NWNU-LKQN-15-8) and State Key Laboratory of Cryospheric Sciences (No. SKLCS-OP-2017-04).

摘要: The Tianshan Mountains is a wet island in arid central Asia, and precipitation amount across the mountains is much larger than that in the surrounding low-lying areas. To investigate the regional water cycle in arid central Asia, stable isotope composition in precipitation has received increased attention during the past decades. This paper reviewed current knowledge of observed and simulated stable isotope ratios in precipitation across the Tianshan Mountains. The temperature effect of stable isotopes in precipitation has been widely accepted in arid central Asia and can be applied to paleoclimate reconstruction using ice cores. The seasonality of precipitation isotopically enriched in summer months and depleted in winter months is usually attributed to westerly-dominated moisture, but different trajectory paths to the northern and southern slopes of the Tianshan Mountains can still be modelled. The proportional contribution and its uncertainty of surface evaporation and transpiration to local precipitation can be estimated using the isotope approach, and transpiration plays a dominant role in recycled moisture for oasis sites. The impact of below-cloud evaporation on precipitation stable isotopes on the southern slope is usually larger than that on the northern slope.

关键词: stable isotopes, precipitation, water cycle, Tianshan Mountains, central Asia

Abstract: The Tianshan Mountains is a wet island in arid central Asia, and precipitation amount across the mountains is much larger than that in the surrounding low-lying areas. To investigate the regional water cycle in arid central Asia, stable isotope composition in precipitation has received increased attention during the past decades. This paper reviewed current knowledge of observed and simulated stable isotope ratios in precipitation across the Tianshan Mountains. The temperature effect of stable isotopes in precipitation has been widely accepted in arid central Asia and can be applied to paleoclimate reconstruction using ice cores. The seasonality of precipitation isotopically enriched in summer months and depleted in winter months is usually attributed to westerly-dominated moisture, but different trajectory paths to the northern and southern slopes of the Tianshan Mountains can still be modelled. The proportional contribution and its uncertainty of surface evaporation and transpiration to local precipitation can be estimated using the isotope approach, and transpiration plays a dominant role in recycled moisture for oasis sites. The impact of below-cloud evaporation on precipitation stable isotopes on the southern slope is usually larger than that on the northern slope.

Key words: stable isotopes, precipitation, water cycle, Tianshan Mountains, central Asia

Bowen GJ, Revenaugh J, 2003. Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research, 39(10): 1299, DOI:10.1029/2003WR002086.
Bowen GJ, Good SP, 2015. Incorporating water isoscapes in hydrological and water resource investigations. Wiley Interdisciplinary Reviews: Water, 2(2): 107-119, DOI:10.1002/wat2.1069.
Cai YJ, Chiang JCH, Breitenbach SFM, et al., 2017. Holocene moisture changes in western China, Central Asia, inferred from stalagmites. Quaternary Science Reviews, 158: 15-28, DOI:10.1016/j.quascirev.2016.12.014.
Che YJ, Zhang MJ, Wang SJ, et al., 2016. Stable water isotopes of precipitation in China simulated by SWING2 models. Arabian Journal of Geosciences, 9(19): 732, DOI:10.1007/s12517-016-2755-5.
Chen FL, Zhang MJ, Wang SJ, et al., 2015. Relationship between sub-cloud secondary evaporation and stable isotopes in precipitation of Lanzhou and surrounding area. Quaternary International, 380-381: 68-74, DOI:10.1016/j.quaint.2014.12.051.
Chen X, 2010. Physical Geography of Arid Land in China. Beijing: Science Press. (in Chinese)
Chen YN, Li WH, Deng HJ, et al., 2016. Changes in Central Asia’s water tower: past, present and future. Scientific Reports, 6: 35458, DOI:10.1038/srep35458.
Cheng H, Zhang PZ, Spötl C, et al., 2012. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophysical Research Letters, 39(1): L01705, DOI:10.1029/2011GL050202.
Cheng H, Spötl C, Breitenbach SFM, et al., 2016. Climate variations of Central Asia on orbital to millennial timescales. Scientific Reports, 6: 36975, DOI:10.1038/srep36975.
Crawford J, Hughes CE, Parkes SD, 2013. Is the isotopic composition of event based precipitation driven by moisture source or synoptic scale weather in the Sydney Basin, Australia?. Journal of Hydrology, 507: 213-226, DOI:10.1016/j.jhydrol.2013.10.031.
Cui JP, Tian LD, Biggs TW, et al., 2017. Deuterium-excess determination of evaporation to inflow ratios of an alpine lake: implications for water balance and modeling. Hydrological Processes, 31(5): 1034-1046, DOI:10.1002/hyp.11085.
Dai Y, Zheng XJ, Tang LS, et al., 2015. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert. Plant and Soil, 389(1-2): 73-87, DOI:10.1007/s11104-014-2342-z.
Dansgaard W, 1964. Stable isotopes in precipitation. Tellus, 16(4): 436-468, DOI:10.3402/tellusa.v16i4.8993.
Deng HJ, Chen YN, 2017. Influences of recent climate change and human activities on water storage variations in Central Asia. Journal of Hydrology, 544: 46-57, DOI:10.1016/j.jhydrol.2016.11.006.
Feng F, Li ZQ, Zhang MJ, et al., 2013. Deuterium and oxygen 18 in precipitation and atmospheric moisture in the upper Urumqi River Basin, eastern Tianshan Mountains. Environmental Earth Sciences, 68(4): 1199-1209, DOI:10.1007/s12665-012-1820-y.
Froehlich K, Kralik M, Papesch W, et al., 2008. Deuterium excess in precipitation of Alpine regions-moisture recycling. Isotopes in Environmental and Health Studies, 44(1): 61-70, DOI:10.1080/10256010801887208.
Galewsky J, Steen-Larsen HC, Field RD, et al., 2016. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Reviews of Geophysics, 54(4): 809-865, DOI:10.1002/2015RG000512.
He Y, Risi C, Gao J, et al., 2015. Impact of atmospheric convection on south Tibet summer precipitation isotopologue composition using a combination of in situ measurements, satellite data, and atmospheric general circulation modeling. Journal of Geophysical Research: Atmospheres, 120(9): 3852-3871, DOI:10.1002/2014JD022180.
Hijmans RJ, Cameron SE, Parra JL, et al., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15): 1965-1978, DOI:10.1002/joc.1276.
Hou SG, Qin DH, Mayewski PA, et al., 1999. Climatological significance of δ18O in precipitation and ice cores: a case study at the head of the Ürümqi river, Tien Shan, China. Journal of Glaciology, 45(151): 517-523, DOI:10.1017/S0022143000001374.
Hua LJ, Zhong LH, Ke ZJ, 2017. Characteristics of the precipitation recycling ratio and its relationship with regional precipitation in China. Theoretical and Applied Climatology, 127(3-4): 513-531, DOI:10.1007/s00704-015-1645-1.
IAEA/WMO (International Atomic Energy Agency/World Meteorological Organization), 2017. Global Network of Isotopes in Precipitation (GNIP). 2017-11-21. http://www-naweb.iaea.org/napc/ih/ IHS_resources_gnip.html.
Kong YL, Pang ZH, Froehlich K, 2013. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess. Tellus B: Chemical and Physical Meteorology, 65(1): 19251, DOI:10.3402/tellusb.v65i0.19251.
Kong YL, Pang ZH, 2016. A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: effects of moisture recycling and sub-cloud evaporation. Journal of Hydrology, 542: 222-230, DOI:10.1016/j.jhydrol.2016.09.007.
Li ZX, Feng Q, Wang QJ, et al., 2016a. Contributions of local terrestrial evaporation and transpiration to precipitation using δ18O and D-excess as a proxy in Shiyang inland river basin in China. Global and Planetary Change, 146: 140-151, DOI:10.1016/j.gloplacha.2016.10.003.
Li ZX, Feng Q, Wang QJ, et al., 2016b. The influence from the shrinking cryosphere and strengthening evopotranspiration on hydrologic process in a cold basin, Qilian Mountains. Global and Planetary Change, 144: 119-128, DOI:10.1016/j.gloplacha.2016.06.017.
Li ZX, Feng Q, Wang YM, et al., 2016c. Effect of sub-cloud evaporation on the δ18O of precipitation in Qilian Mountains and Hexi Corridor, China. Sciences in Cold and Arid Regions, 8(5): 378-387, DOI:10.3724/SP.J.1226.2016.00378.
Liu JR, Song XF, Sun XM, et al., 2009. Isotopic composition of precipitation over arid Northwestern China and its implications for the water vapor origin. Journal of Geographical Sciences, 19(2): 164-174, DOI:10.1007/s11442-009-0164-3.
Liu JR, Song XF, Yuan GF, et al., 2014a. Stable isotopic compositions of precipitation in China. Tellus B: Chemical and Physical Meteorology, 66(1): 22567, DOI:10.3402/tellusb.v66.22567.
Liu XK, Rao ZG, Zhang XJ, et al., 2015. Variations in the oxygen isotopic composition of precipitation in the Tianshan Mountains region and their significance for the Westerly circulation. Journal of Geographical Sciences, 25(7): 801-816, DOI:10.1007/s11442-015-1203-x.
Liu YP, Hou SG, Hong S, et al., 2011. High-resolution trace element records of an ice core from the eastern Tien Shan, central Asia, since 1953 AD. Journal of Geophysical Research: Atmospheres, 116(D12): D12307, DOI:10.1029/2010JD015191.
Liu ZF, Tian LD, Chai XR, et al., 2008. A model-based determination of spatial variation of precipitation δ18O over China. Chemical Geology, 249(1-2): 203-212, DOI:10.1016/j.chemgeo.2007.12.011.
Liu ZF, Yoshimura K, Kennedy CD, et al., 2014b. Water vapor δD dynamics over China derived from SCIAMACHY satellite measurements. Science China Earth Sciences, 57(4): 813-823, DOI:10.1007/s11430-013-4687-1.
Pang ZH, Kong YL, Froehlich K, et al., 2011. Processes affecting isotopes in precipitation of an arid region. Tellus B: Chemical and Physical Meteorology, 63(3): 352-359, DOI:10.1111/j.1600-0889.2011.00532.x.
Peng TR, Wang CH, Huang CC, et al., 2010. Stable isotopic characteristic of Taiwan's precipitation: a case study of western Pacific monsoon region. Earth and Planetary Science Letters, 289(3-4): 357-366, DOI:10.1016/j.epsl.2009.11.024.
Peng TR, Liu KK, Wang CH, et al., 2011. A water isotope approach to assessing moisture recycling in the island-based precipitation of Taiwan: a case study in the western Pacific. Water Resources Research, 47(8): W08507, DOI:10.1029/2010WR009890.
Phillips DL, Gregg JW, 2001. Uncertainty in source partitioning using stable isotopes. Oecologia, 127(2): 171-179, DOI:10.1007/s004420000578.
Salamalikis V, Argiriou AA, Dotsika E, 2016. Isotopic modeling of the sub-cloud evaporation effect in precipitation. Science of the Total Environment, 544: 1059-1072, DOI:10.1016/j.scitotenv.2015.11.072.
Skrzypek G, Mydłowski A, Dogramaci S, et al., 2015. Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. Journal of Hydrology, 523: 781-789, DOI:10.1016/j.jhydrol.2015.02.010.
Sodemann H, Schwierz C, Wernli H, 2008. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. Journal of Geophysical Research: Atmospheres, 113(D3): D03107, DOI:10.1029/2007JD008503.
Stein AF, Draxler RR, Rolph GD, et al., 2015. NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12): 2059-2077, DOI:10.1175/BAMS-D-14-00110.1.
Stewart MK, 1975. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: applications to atmospheric processes and evaporation of lakes. Journal of Geophysical Research, 80(9): 1133-1146, DOI:10.1029/JC080i009p01133.
Sturm C, Zhang Q, Noone D, 2010. An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology. Climate of the Past, 6(1): 115-129, DOI:10.5194/cp-6-115-2010.
Sun CJ, Li WH, Chen YN, et al., 2015. Isotopic and hydrochemical composition of runoff in the Urumqi River, Tianshan Mountains, China. Environmental Earth Sciences, 74(2): 1521-1537, DOI:10.1007/s12665-015-4144-x.
Sun CJ, Chen YN, Li WH, et al., 2016a. Isotopic time series partitioning of streamflow components under regional climate change in the Urumqi River, Northwest China. Hydrological Sciences Journal, 61(8): 1443-1459, DOI:10.1080/02626667.2015.1031757.
Sun CJ, Yang J, Chen YN, et al., 2016b. Comparative study of streamflow components in two inland rivers in the Tianshan Mountains, Northwest China. Environmental Earth Sciences, 75(9): 727, DOI:10.1007/s12665-016-5314-1.
Sun CJ, Shen YJ, Chen YN, et al., 2018. Quantitative evaluation of the rainfall influence on streamflow in an inland mountainous river basin within Central Asia. Hydrological Sciences Journal, 63(1): 17-30, DOI:10.1080/02626667.2017.1390314.
Terzer S, Wassenaar LI, Araguás-Araguás LJ, et al., 2013. Global isoscapes for δ18O and δ2H in precipitation: improved prediction using regionalized climatic regression models. Hydrology and Earth System Sciences, 17(11): 4713-4728, DOI:10.5194/hess-17-4713-2013.
Tian LD, Yao TD, Li Z, et al., 2006. Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs. Journal of Geophysical Research: Atmospheres, 111(D13): D13103, DOI:10.1029/2005JD006249.
Tian LD, Yao TD, MacClune K, et al., 2007. Stable isotopic variations in west China: a consideration of moisture sources. Journal of Geophysical Research: Atmospheres, 112(D10): D10112, DOI:10.1029/2006JD007718.
Tian LD, Yao TD, 2016. High-resolution climatic and environmental records from the Tibetan Plateau ice cores. Chinese Science Bulletin, 61(9): 926-937, DOI:10.1360/N972015-00779.
Wang SJ, Zhang MJ, Chen FL, et al., 2015a. Comparison of GCM-simulated isotopic compositions of precipitation in arid Central Asia. Journal of Geographical Sciences, 25(7): 771-783, DOI:10.1007/s11442-015-1201-z.
Wang SJ, Zhang MJ, Hughes CE, et al., 2016a. Factors controlling stable isotope composition of precipitation in arid conditions: an observation network in the Tianshan Mountains, Central Asia. Tellus B: Chemical and Physical Meteorology, 68(1): 26206, DOI:10.3402/tellusb.v68.26206.
Wang SJ, Zhang MJ, Che YJ, et al., 2016b. Contribution of recycled moisture to precipitation in oases of arid Central Asia: a stable isotope approach. Water Resources Research, 52(4): 3246-3257, DOI:10.1002/2015WR018135.
Wang SJ, Zhang MJ, Che YJ, et al., 2016c. Influence of below-cloud evaporation on deuterium excess in precipitation of arid Central Asia and its meteorological controls. Journal of Hydrometeorology, 17(7): 1973-1984, DOI:10.1175/JHM-D-15-0203.1.
Wang SJ, Zhang MJ, Crawford J, et al., 2017. The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia. Journal of Geophysical Research: Atmospheres, 122(5): 2667-2682, DOI:10.1002/2015JD024626.
Wang XY, Li ZQ, Tayier R, et al., 2015b. Characteristics of atmospheric precipitation isotopes and isotopic evidence for the moisture origin in Yushugou River basin, Eastern Tianshan Mountains, China. Quaternary International, 380-381: 106-115, DOI:10.1016/j.quaint.2014.12.023.
Watanabe O, Wu XL, Ikegami K, et al., 1983. Oxygen isotope characteristics of glaciers in the eastern Tian Shan. Journal of Glaciology and Cryopedology, 5(3): 101-112.
Wen XF, Yang B, Sun XM, et al., 2016. Evapotranspiration partitioning through in-situ oxygen isotope measurements in an oasis cropland. Agricultural and Forest Meteorology, 230-231: 89-96, DOI:10.1016/j.agrformet.2015.12.003.
Wu Y, Zhou H, Zheng XJ, et al., 2014. Seasonal changes in the water use strategies of three co-occurring desert shrubs. Hydrological Processes, 28(26): 6265-6275, DOI:10.1002/hyp.10114.
Yang S, Zhang MJ, Wang SJ, et al., 2017. Interannual trends in stable oxygen isotope composition in precipitation of China during 1979-2007: spatial incoherence. Quaternary International, 454: 25-37, DOI:10.1016/j.quaint.2017.07.029.
Yao TD, Masson V, Jouzel J, et al., 1999. Relationships between δ18O in precipitation and surface air temperature in the Urumqi River Basin, East Tianshan Mountains, China. Geophysical Research Letters, 26(23): 3473-3476, DOI:10.1029/1999GL006061.
Yao TD, Masson-Delmotte V, Gao J, et al., 2013. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations. Reviews of Geophysics, 51(4): 525-548, DOI:10.1002/rog.20023.
Zhang JL, Wei RQ, Yang L, 2014. Comparison of precipitation area and intensity of two rare heavy rainfall area and intensity over Southern Xinjiang in 2013. Desert and Oasis Meteorology, 8(5): 1-9, DOI:10.3969/j.issn.1002-0799.2014.05.001.
Zhang MJ, Wang SJ, 2016. A review of precipitation isotope studies in China: basic pattern and hydrological process. Journal of Geographical Sciences, 26(7): 921-938, DOI:10.1007/s11442-016-1307-y.
Zhang XJ, Jin LY, Chen J, et al., 2017. Detecting the relationship between moisture changes in arid central Asia and East Asia during the Holocene by model-proxy comparison. Quaternary Science Reviews, 176: 36-50, DOI:10.1016/j.quascirev.2017.09.012.
Zhang XP, Yao TD, Liu JM, 2003. Oxygen-18 in different waters in Urumqi River Basin. Journal of Geographical Sciences, 13(4): 438-446.
Zheng SH, Hou FG, Ni BL, 1983. Research on stable hydrogen and oxygen isotopes in precipitation of China. Chinese Science Bulletin, 28(13): 801-806, DOI:10.1360/csb1983-28-13-801.
Zhou H, Zhao WZ, Zheng XJ, et al., 2015. Root distribution of Nitraria sibirica with seasonally varying water sources in a desert habitat. Journal of Plant Research, 128(4): 613-622, DOI:10.1007/s10265-015-0728-5.
Zhu XF, Zhang MJ, Wang SJ, et al., 2015. Comparison of monthly precipitation derived from high-resolution gridded datasets in arid Xinjiang, central Asia. Quaternary International, 358: 160-170, DOI:10.1016/j.quaint.2014.12.027.
[1] XiaoYu Zhang, ShengJie Wang, Xin Zhang, Ping Zhou, Shuang Jin, ZhongQin Li, Nozomu Takeuchi. Chemistry and environmental significance of aerosols collected in the eastern Tianshan[J]. Sciences in Cold and Arid Regions, 2017, 9(5): 455-466.
[2] ZuHan Liu, JianHua Xu, WeiHong Li. Complex network analysis of climate change in the Tarim River Basin, Northwest China[J]. Sciences in Cold and Arid Regions, 2017, 9(5): 476-487.
[3] Zhuo Ga, Tao Chen, La Ba, PuBuCiRen, Ba Sang. Distribution of winter-spring snow over the Tibetan Plateau and its relationship with summer precipitation in Yangtze River[J]. Sciences in Cold and Arid Regions, 2017, 9(1): 20-28.
[4] JinKui Wu, ShiWei Liu, LePing Ma, Jia Qin, JiaXin Zhou, Hong Wei. Comparison analysis of sampling methods to estimate regional precipitation based on the Kriging interpolation methods: A case of northwestern China[J]. Sciences in Cold and Arid Regions, 2016, 8(6): 485-494.
[5] ZongXing Li, Qi Feng, YaMin Wang, JianGuo Li, XiaoYan Guo, YongGe Li. Effect of sub-cloud evaporation on the δ18O of precipitation in Qilian Mountains and Hexi Corridor, China[J]. Sciences in Cold and Arid Regions, 2016, 8(5): 378-387.
[6] TianDing Han, HongZheng Pu, Peng Cheng, KeQin Jiao. Hydrological effects of alpine permafrost in the headwaters of the Urumqi River, Tianshan Mountains[J]. Sciences in Cold and Arid Regions, 2016, 8(3): 241-249.
[7] SiWei He, ZhuoTong Nan, YuTing Hou. Accuracy evaluation of two precipitation datasets over upper reach of Heihe River Basin, northwestern China[J]. Sciences in Cold and Arid Regions, 2015, 7(2): 157-169.
[8] YanWei Zhang, QuanSheng Ge, FengQing Jiang, JingYun Zheng, WenShou Wei. Assessing changes in extreme precipitation over Xinjiang using regional climate model of PRECIS[J]. Sciences in Cold and Arid Regions, 2015, 7(2): 170-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] . [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] . [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 436 -446 .