Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (2): 133-149.doi: 10.3724/SP.J.1226.2021.20056

Previous Articles    

Sandstone-concrete interface transition zone (ITZ) damage and debonding micromechanisms under freeze-thaw

YanJun Shen1,2,3,Huan Zhang4(),JinYuan Zhang4(),HongWei Yang4,Xu Wang4,Jia Pan4   

  1. 1.School of Geology and Environment, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China
    2.Geological Research Institute for Coal Green Mining, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China
    3.Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an, Shaanxi 710054, China
    4.School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China
  • Received:2020-06-26 Accepted:2020-10-16 Online:2021-04-30 Published:2021-05-11
  • Contact: Huan Zhang,JinYuan Zhang;
  • Supported by:
    the National Natural Science Foundation of China(41772333);the National Natural Science Foundation of Shaanxi Province, China(2018JQ5124);the New-Star Talents Promotion Project of Science and Technology of Shaanxi Province, China(2019KJXX049)


The sufficient bond between concrete and rock is an important prerequisite to ensure the effect of shotcrete support. However, in cold regions engineering protection system, the bond condition of rock and concrete surface is easily affected by freeze-thaw cycles, resulting in interface damage, debonding and even supporting failure. Understanding the micromechanisms of the damage and debonding of the rock-concrete interface is essential for improving the interface protection. Therefore, the micromorphology, micromechanical properties, and microdebonding evolution of the sandstone-concrete interface transition zone (ITZ) under varying freeze-thaw cycles (0, 5, 10, 15, 20) were studied using scanning electron microscope, stereoscopic microscope, and nano-indentation. Furthermore, the distribution range and evolution process of ITZ affected by freeze-thaw cycles were defined. Major findings of this study are as follows: (1) The microdamage evolution law of the ITZ under increasing freeze-thaw cycles is clarified, and the relationship between the number of cracks in the ITZ and freeze-thaw cycles is established; (2) As the number of freeze-thaw cycles increases, the ITZ's micromechanical strength decreases, and its development width tends to increase; (3) The damage and debonding evolution mechanisms of sandstone-concrete ITZ under freeze-thaw cycles is revealed, and its micromechanical evolution model induced by freeze-thaw cycles is proposed.

Key words: sandstone-concrete, interface transition zone (ITZ), freeze-thaw cycles, nano-indentation, damage and debonding

Figure 1

Sandstone-concrete samples preparation: (a) Sandstone-concrete cubes; (b) Sandstone-concrete cylinders; and (c) Sandstone-concrete discs"

Figure 2

Experimental equipment: (a) Vacuum-saturation equipment, (b) Automatic freeze-thaw cycles equipment, (c) Oven, (d) Scanning electron microscope, (e) Stereoscopic microscope, and (f) Nano-indentation equipment"

Figure 3

Loading-unloading (P-h) curve and a schematic diagram of Nano-indentation (Sorelli et al., 2008)"

Figure 4

Nano-indentation test interface"

Figure 5

Micromorphology and hydration products of the ITZ"

Figure 6

Hydration reaction vs. time for cement paste (Fan et al., 2019)"

Figure 7

Expansion of cracks with increasing freeze-thaw cycles (SEM)"

Figure 8

Development of cracks with freeze-thaw cycles at the same location (Stereoscopic microscope)"

Figure 9

Microstructure of the ITZ under different freeze-thaw cycles"

Figure 10

The expansion of the ITZ cracks with increasing freeze-thaw cycles"

Figure 11

Characteristic parameters of ITZ cracks"

Figure 12

Micromechanical parameters distribution and change rule"

Figure 13

Elastic modulus nephogram of samples with varying freeze-thaw cycles"

Figure 14

Microstructure of the sandstone interface"

Figure 15

Microscopic model of the sandstone-concrete ITZ"

Figure 16

A model of the C-S-H gels (Li et al., 2019)"

Andjelkovic V, Pavlovic N, Lazarevic Z, et al., 2015. Modelling of shear characteristics at the concrete-rock mass interface. International Journal of Rock Mechanics and Mining Sciences, 76: 222-236. DOI: 10.1016/j.ijrmms.2015.03.024.
doi: 10.1016/j.ijrmms.2015.03.024
Badeli S, Carter A, Doré G, 2018. Complex modulus and fatigue analysis of asphalt mix after daily rapid freeze-thaw cycles. Journal of Materials in Civil Engineering, 30(4): 04018056. DOI: 10.1061/(ASCE)MT.1943-5533.0002236.
doi: 10.1061/(ASCE)MT.1943-5533.0002236
Bandini A, Berry P, Bemporad E, et al., 2012. Effects of intra-crystalline microcracks on the mechanical behavior of a marble under indentation. International Journal of Rock Mechanics and Mining Sciences, 54: 47-55. DOI: 10.1016/j.ijrmms.2012.05.024.
doi: 10.1016/j.ijrmms.2012.05.024
Barnes BD, Diamond S, Dolch WL, 1978. The contact zone between portland cement paste and glass "aggregate" surfaces. Cement and Concrete Research, 8(2): 233-243. DOI: 10.1016/0008-8846(78)90012-1.
doi: 10.1016/0008-8846(78)90012-1
Barnes BD, Diamond S, Dolch WL, 1979. Micromorphology of the Interfacial Zone Around Aggregates in Portland Cement Mortar. Journal of the American Ceramic Society, 62(1-2): 21-24. DOI: 10.1111/j.1151-2916.1979.tb18797.x.
doi: 10.1111/j.1151-2916.1979.tb18797.x
Cui S, Xu D, Liu P, et al., 2017. Exploratory study on improving bond strength of shotcrete in hot and dry environments of high geothermal tunnels. KSCE Journal of Civil Engineering, 21(6): 2245-2251. DOI: 10.1007/s12205-016-0901-y.
doi: 10.1007/s12205-016-0901-y
Cui S, Zhu B, Li F, et al., 2016. Experimental study on bond performance between shotcrete and rock in a hot and humid tunnel environment. KSCE Journal of Civil Engineering, 20(4): 1385-1391. DOI: 10.1007/s12205-015-0159-9.
doi: 10.1007/s12205-015-0159-9
Cwirzen A, Penttala V, 2005. Aggregate-cement paste transition zone properties affecting the salt-frost damage of high-performance concretes. Cement and Concrete Research, 35(4): 671-679. DOI: 10.1016/j.cemconres.2004.06.009.
doi: 10.1016/j.cemconres.2004.06.009
Dharmawardhana C, Bakare M, Misra A, et al., 2016. Nature of interatomic bonding in controlling the mechanical properties of calcium silicate hydrates. Journal of the American Ceramic Society, 99(6): 2120-2130. DOI: 10.1111/jace. 14214.
doi: 10.1111/jace. 14214
Dharmawardhana C, Misra A, Ching W, 2014. Quantum mechanical metric for internal cohesion in cement crystals. Scientific Reports, 4: 7332-7332. DOI: 10.1038/srep07332.
doi: 10.1038/srep07332
Diamond S, 2001. Considerations in image analysis as applied to investigations of the ITZ in concrete. Cement and Concrete Composites, 23(2): 171-178. DOI: 10.1016/S0958-9465(00)00085-8.
doi: 10.1016/S0958-9465(00)00085-8
Dong W, Wu Z, Zhou X, et al., 2017. An experimental study on crack propagation at rock-concrete interface using digital image correlation technique. Engineering Fracture Mechanics, 171: 50-63. DOI: 10.1016/j.engfracmech.2016. 12.003.
doi: 10.1016/j.engfracmech.2016. 12.003
Du H, Radonjic M, 2018. Comparison of Micro/Nano-Indentation Results for Pottsville and Marcellus Shale. 52nd U.S. Rock Mechanics/Geomechanics Symposium: 6.
Fan L, Zhao Q, Zhang J, et al., 2019. Experimental study on the structure properties and interface interference of the interface transition zone (ITZ) of cement-based materials. Journal of HeBei University of Water Resources and Electric Engineering, 3: 26-33.
Gao J, Pan J, 2000. Preliminary study on the cause of the weak link of the new and old concrete interface. Concrete, 6: 44-46.
Gao Y, Zhu X, Corr DJ, et al., 2019. Characterization of the interfacial transition zone of CNF-Reinforced cementitious composites. Cement and Concrete Composites, 99: 130-139. DOI: 10.1016/j.cemconcomp.2019.03.002.
doi: 10.1016/j.cemconcomp.2019.03.002
Guo K, Ma H, Yang F, et al., 2020. Micromechanical properties of GO-RC interface transition zone under freeze-thaw cycles. Journal of Building Materials, 23(1): 230-238.
He S, Li Z, Yang EH, 2019. Quantitative characterization of anisotropic properties of the interfacial transition zone (ITZ) between microfiber and cement paste. Cement and Concrete Research, 122: 136-146. DOI: 10.1016/j.cemconres.2019.05.007.
doi: 10.1016/j.cemconres.2019.05.007
Ho CH, Chivens K, Floyd S, et al., 2019. Preliminary evaluation of concrete-rock interface behavior under the action of freeze-thaw cycles. In: Ibraim E, Tarantino A (eds.). 7th International Symposium on Deformation Characteristics of Geomaterials, IS-Glasgow2019.
doi: 10.1051/e3sconf/20199213012
Sciences EDP, 13012. DOI: 10.1051/e3sconf/20199213012.
doi: 10.1051/e3sconf/20199213012
Hussin A, Poole C, 2011. Petrography evidence of the interfacial transition zone (ITZ) in the normal strength concrete containing granitic and limestone aggregates. Construction and Building Materials, 25(5): 2298-2303. DOI: 10.1016/j.conbuildmat.2010.11.023.
doi: 10.1016/j.conbuildmat.2010.11.023
Igarashi S, Bentur A, Mindess S, 1996. Microhardness testing of cementitious materials. Advanced Cement Based Materials, 4(2): 48-57. DOI: 10.1016/S1065-7355(96)90051-6.
doi: 10.1016/S1065-7355(96)90051-6
Jennings HM, 2000. A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Research, 30(1): 101-116. DOI: 10.1016/S0008-8846(99)00209-4.
doi: 10.1016/S0008-8846(99)00209-4
Kim JY, Lee JJ, Lee YH, et al., 2006. Surface roughness effect in instrumented indentation: A simple contact depth model and its verification. Journal of Materials Research, 21(12): 2975-2978. DOI: 10.1557/jmr.2006.0370.
doi: 10.1557/jmr.2006.0370
Krounis A, Johansson F, Larsson S, 2015. Effects of spatial variation in cohesion over the concrete-rock interface on dam sliding stability. Journal of Rock Mechanics and Geotechnical Engineering, 7(6): 659-667. DOI: 10.1016/j.jrmge.2015.08.005.
doi: 10.1016/j.jrmge.2015.08.005
Krounis A, Johansson F, Larsson S, 2016. Shear strength of partially bonded concrete-rock interfaces for application in dam stability analyses. Rock Mechanics and Rock Engineering, 49(7): 2711-2722. DOI: 10.1007/s00603-016-0962-8.
doi: 10.1007/s00603-016-0962-8
Kuroda M, Watanabe T, Terashi N, 2000. Increase of bond strength at interfacial transition zone by the use of fly ash. Cement and Concrete Research, 30(2): 253-258. DOI: 10.1016/S0008-8846(99)00241-0.
doi: 10.1016/S0008-8846(99)00241-0
Lam Thomas SK, Johnston Ian W, 1989. Shear behavior of regular triangular concrete/rock joints—evaluation. Journal of Geotechnical Engineering, 115(5): 728-740. DOI: 10.1061/(ASCE)0733-9410(1989)115:5(728).
doi: 10.1061/(ASCE)0733-9410(1989)115:5(728
Lo K, Ogawa T, Lukajic B, et al., 1991. Measurements of strength parameters of concrete-rock contact at the dam-foundation interface. Geotechnical Testing Journal, 14(4): 383-394. DOI: 10.1520/GTJ10206J.
doi: 10.1520/GTJ10206J
Lothenbach B, Nonat A, 2015. Calcium silicate hydrates: Solid and liquid phase composition. Cement and Concrete Research, 78: 57-70. DOI: 10.1016/j.cemconres.2015.03.019.
doi: 10.1016/j.cemconres.2015.03.019
Li B, Chen W, 2019. Development on molecular structure of calcium silicate hydrate gel. Journal of The Chinese Ceramic Society, 47(8): 1095-1100. DOI: 10.14062/j.issn.0454-5648.2019.08.10.
doi: 10.14062/j.issn.0454-5648.2019.08.10
Li J, Cao J, Xu W, et al., 1999. Research on freeze-thaw failure mechanism of concrete. Journal of Hydraulic Engineering, 30(1): 42-50.
Liu K, Ostadhassan M, Bubach B, 2016. Applications of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks. Journal of Natural Gas Science and Engineering, 35: 1310-1319. DOI: 10.1016/j.jngse.2016.09.068.
doi: 10.1016/j.jngse.2016.09.068
Liu QS, Huang SB, Kang YS, et al., 2015. Numerical and theoretical studies on frost heaving pressure in a single fracture of frozen rock mass under low temperature. Chinese Journal of Geotechnical Engineering, 37(9): 1572-1580. DOI: 10.11779/CJGE201509003.
doi: 10.11779/CJGE201509003
Luo T, Zhang C, Xu X, et al., 2020. Effects of cyclic freeze-thaw on the steel bar reinforced new-to-old concrete interface. Molecules, 25: 1251. DOI: 10.3390/molecules25051251.
doi: 10.3390/molecules25051251
Magnenet V, Auvray C, Francius G, et al., 2011. Determination of the matrix indentation modulus of Meuse/Haute-Marne argillite. Applied Clay Science, 52(3): 266-269. DOI: 10. 1016/j.clay.2011.03.001.
doi: 10. 1016/j.clay.2011.03.001
Mainali G, Dineva S, Nordlund E, 2015. Experimental study on debonding of shotcrete with acoustic emission during freezing and thawing cycle. Cold Regions Science and Technology, 111: 1-12. DOI: 10.1016/j.coldregions.2014. 11.014.
doi: 10.1016/j.coldregions.2014. 11.014
Mellor M, 1970. Phase Composition of Pore Water in Cold Rocks. U.S. Army Cold Regions Research and Engineering Lab., Rep., 292: 66.
Mondal P, Shah S, Marks L, 2009. Nanomechanical Properties of Interfacial Transition Zone in Concrete. In: Bittnar Z, Bartos PJM, Němeček J, Šmilauer V, Zeman J (eds.). Nanotechnology in Construction3.
doi: 10.1007/978-3-642-00980-8_42
Springer, Berlin. DOI: 10.1007/978-3-642-00980-8_42.
doi: 10.1007/978-3-642-00980-8_42
Mouzannar H, Bost M, Leroux M, et al., 2017. Experimental study of the Shear Strength of Bonded Concrete-Rock Interfaces: Surface Morphology and Scale Effect. Rock Mechanics and Rock Engineering, 50(10): 2601-2625. DOI: 10.1007/s00603-017-1259-2.
doi: 10.1007/s00603-017-1259-2
Němeček J, 2009. Creep effects in nanoindentation of hydrated phases of cement pastes. Materials Characterization, 60(9): 1028-1034. DOI: 10.1016/j.matchar.2009.04.008.
doi: 10.1016/j.matchar.2009.04.008
Nix WD, Gao H, 1998. Indentation size effects in crystalline materials: A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 46(3): 411-425. DOI: 10.1016/S0022-5096(97)00086-0.
doi: 10.1016/S0022-5096(97)00086-0
Pellenq RJM, Lequeux N, van Damme H, 2008. Engineering the bonding scheme in C-S-H: The iono-covalent framework. Cement and Concrete Research, 38(2): 159-174. DOI: 10.1016/j.cemconres.2007.09.026.
doi: 10.1016/j.cemconres.2007.09.026
Phillips M, Wolter A, Lüthi R, et al., 2017. Rock slope failure in a recently deglaciated permafrost rock wall at Piz Kesch (EasternSwiss Alps), February 2014. Earth Surface Processes and Landforms, 42(3): 426-438. DOI: 10.1002/esp.3992.
doi: 10.1002/esp.3992
Renaud S, Saichi T, Bouaanani N, et al., 2019. Roughness effects on the shear strength of concrete and rock joints in dams based on experimental data. Rock Mechanics and Rock Engineering, 52(10): 3867-3888. DOI: 10.1007/s00603-019-01803-x.
doi: 10.1007/s00603-019-01803-x
Sáez del Bosque IF, Zhu W, Howind T, et al., 2017. Properties of interfacial transition zones (ITZs) in concrete containing recycled mixed aggregate. Cement and Concrete Composites, 81: 25-34. DOI: 10.1016/j.cemconcomp.2017.04.011.
doi: 10.1016/j.cemconcomp.2017.04.011
Shen Y, Wang Y, Wei X, et al., 2020a. Investigation on meso-debonding process of the sandstone-concrete interface induced by freeze-thaw cycles using NMR technology. Construction and Building Materials, 252: 118962. DOI: 10. 1016/j.conbuildmat.2020.118962.
doi: 10. 1016/j.conbuildmat.2020.118962
Shen Y, Wang Y, Yang Y, et al., 2019. Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface. Construction and Building Materials, 213: 156-166. DOI: 10.1016/j.conbuildmat.2019.04.078.
doi: 10.1016/j.conbuildmat.2019.04.078
Shen Y, Yang H, Xi J, et al., 2020b. A novel shearing fracture morphology method to assess the influence of freeze-thaw actions on concrete-granite interface. Cold Regions Science and Technology, 169: 102900. DOI: 10.3389/feart. 2019.00333.
doi: 10.3389/feart. 2019.00333
Shen Y, Yang G, Rong T, et al., 2016. Proposed scheme for freeze-thaw tests on rock. Chinese Journal of Rock Mechanics and Engineering, 38(10): 1775-1782. DOI: 10. 11779/CJGE.2016.10.005.
doi: 10. 11779/CJGE.2016.10.005
Shui Z, Wan H, 2002a. Aggregate-cement interface transition zone in old concrete (ITZ) (Ⅰ)—Enrichment of elements and compounds in ITZ. Journal of Wuhan University of Technology, 24(4): 21-23.
Shui Z, Wan H, 2002b. Aggregate-cement interface transition zone (ITZ) in old concrete (Ⅱ)—The distribution characteristics of elements in the interface zone. Journal of Wuhan University of Technology, 24(5): 22-25.
Sorelli L, Constantinides G, Ulm FJ, et al., 2008. The nano-mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques. Cement and Concrete Research, 38(12): 1447-1456. DOI: j.cemconres. 2008.09.002.
doi: j.cemconres. 2008.09.002
Su X, Chen P, Ma T, 2019. Evaluation of shale fracture toughness based on micrometer indentation test. Petroleum, 5(1): 52-57. DOI: 10.1016/j.petlm.2018.05.005.
doi: 10.1016/j.petlm.2018.05.005
Tang Y, Xu G, Lian J, et al., 2016. Effect of temperature and humidity on the adhesion strength and damage mechanism of shotcrete-surrounded rock. Construction and Building Materials, 124: 1109-1119. DOI: j.conbuildmat.2016.08.126.
doi: j.conbuildmat.2016.08.126
Taylor HFW, 1993. Nanostructure of C-S-H: Current status. Advanced Cement Based Materials, 1(1): 38-46. DOI: 10. 1016/1065-7355(93)90006-A.
doi: 10. 1016/1065-7355(93)90006-A
Tong J, Karakus M, Wang M, et al., 2016. Shear strength characteristics of shotcrete-rock interface for a tunnel driven in high rock temperature environment. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2(4): 331-341. DOI: 10.1007/s40948-016-0039-x.
doi: 10.1007/s40948-016-0039-x
Tian HM, Chen W, Yang D, et al., 2014. Experimental and numerical analysis of the shear behaviour of cemented concrete-rock joints. Rock Mechanics and Rock Engineering, 48: 213-222. DOI: 10.1007/s00603-014-0560-6.
doi: 10.1007/s00603-014-0560-6
Velez K, Maximilien S, Damidot D, et al., 2001. Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker. Cement and Concrete Research, 31(4): 555-561. DOI: 10.1016/S0008-8846(00)00505-6.
doi: 10.1016/S0008-8846(00)00505-6
Wang M, Xie Y, Long G, et al., 2019. Microhardness characteristics of high-strength cement paste and interfacial transition zone at different curing regimes. Construction and Building Materials, 221: 151-162. DOI: 10.1016/j.conbuildmat.2019.06.084.
doi: 10.1016/j.conbuildmat.2019.06.084
Wang T, Zhou G, Wang J, et al., 2018a. Stochastic analysis of uncertainty mechanical characteristics for surrounding rock and lining in cold region tunnels. Cold Regions Science and Technology, 145: 160-168. DOI: 10.1016/j.coldregions.2017.10.016.
doi: 10.1016/j.coldregions.2017.10.016
Wang W, Qin Y, Lei M, et al., 2018b. Effect of repeated freeze-thaw cycles on the resilient modulus for fine-grained subgrade soils with low plasticity index. Road Materials and Pavement Design, 19(4): 898-911. DOI: 10. 1080/14680629.2017.1283352.
doi: 10. 1080/14680629.2017.1283352
Wang XH, Jacobsen S, He JY, et al., 2009. Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar. Cement and Concrete Research, 39(8): 701-715. DOI: 10.1016/j.cemconres. 2009.05.002.
doi: 10.1016/j.cemconres. 2009.05.002
Xiang W, Liu X, 2010. Experimental study of mechanical properties of combined specimen with rock and shotcrete under freezing-thawing cycles. Chinese Journal of Rock Mechanics and Engineering, 29(12): 2510-2521.
Xiao J, Li W, Sun Z, et al., 2013. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cement and Concrete Composites, 37: 276-292. DOI: 10.1016/j.cemconcomp.2013.01.006.
doi: 10.1016/j.cemconcomp.2013.01.006
Xie H, Li G, Xiong G, 2002. Microstructure model of the interfacial zone between fresh and old concrete. Journal of Wuhan University of Technology-Mater. Sci. Ed., 17(4): 64-68. DOI: 10.1007/BF02838421.
doi: 10.1007/BF02838421
Xu L, Deng F, Chi Y, 2017. Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber and cement paste. Construction and Building Materials, 145: 619-638. DOI: 10.1016/j.conbuildmat.2017.04.035.
doi: 10.1016/j.conbuildmat.2017.04.035
Xu L, Yu H, Chi Y, et al., 2016. Nano-indentation character of interfacial transition zone between steel fiber and cement paste. Journal of the Chinese Ceramic Society, 44: 1134-1146. DOI: 10.14062/j.issn.0454-5648.2016.08.09.
doi: 10.14062/j.issn.0454-5648.2016.08.09
Yang X, Shen A, Guo Y, et al., 2018. Deterioration mechanism of interface transition zone of concrete pavement under fatigue load and freeze-thaw coupling in cold climatic areas. Construction and Building Materials, 160: 588-597. DOI: 10.1016/j.conbuildmat.2017.11.031.
doi: 10.1016/j.conbuildmat.2017.11.031
Zampini D, Shah SP, Jennings HM, 1998. Early age microstructure of the paste-aggregate interface and its evolution. Journal of Materials Research, 13(7): 1888-1898. DOI: 10. 1557/JMR.1998.0268.
doi: 10. 1557/JMR.1998.0268
Zanjani Zadeh V, Bobko CP, 2014. Nano-mechanical properties of internally cured kenaf fiber reinforced concrete using nanoindentation. Cement and Concrete Composites, 52: 9-17. DOI: 10.1016/j.cemconcomp.2014.04.002.
doi: 10.1016/j.cemconcomp.2014.04.002
[1] Tao Wen,Sai Ying,FengXi Zhou. Calculation of salt-frost heave of sulfate saline soil due to long-term freeze-thaw cycles [J]. Sciences in Cold and Arid Regions, 2020, 12(5): 284-294.
[2] ShengYun Chen, Qian Zhao, WenJie Liu, Zhao Zhang, Shuo Li, HongLin Li, ZhongNan Nie, LingXi Zhou, ShiChang Kang. Effects of freeze-thaw cycles on soil N2O concentration and flux in the permafrost regions of the Qinghai-Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 69-79.
[3] Tuncer B. Edil, Bora Cetin, Ali Soleimanbeigi. Laboratory and field performance of recycled aggregate base in a seasonally cold region [J]. Sciences in Cold and Arid Regions, 2017, 9(3): 183-191.
[4] ShengBo Xie, JianJun Qu, Tao Wang. Wind tunnel simulation of the effects of freeze-thaw cycles on soil erosion in the Qinghai-Tibet Plateau [J]. Sciences in Cold and Arid Regions, 2016, 8(3): 187-195.
[5] QianMi Yu, JianKun Liu, JingYu Liu, DingJun Lv, TengFei Wang. Experimental study of the effects of non-uniformly distributed fine soil on mechanical properties of Shenyang-Dandong Railway coarse-grained soil [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 503-512.
[6] ZhenYa Liu, JingYu Liu, QingZhi Wang, JianKun Liu. Compressive strength and frost heave resistance of different types of semi-rigid base materials after freeze-thaw cycles [J]. Sciences in Cold and Arid Regions, 2015, 7(4): 365-369.
[7] ChengYi Yu, Shuang Tian, Liang Tang, XianZhang Ling, GuoQing Zhou. Finite element analysis on deformation of highembankment in heavy-haul railway subjected to freeze-thaw cycles [J]. Sciences in Cold and Arid Regions, 2015, 7(4): 421-429.
[8] Ze Zhang, Vadim V. Pendin, WenJie Feng, ZhongQiong Zhang. The influence of freeze-thaw cycles on the granulometric composition of Moscow morainic clay [J]. Sciences in Cold and Arid Regions, 2015, 7(3): 199-205.
Full text



No Suggested Reading articles found!