Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (1): 1-17.doi: 10.3724/SP.J.1226.2021.20045

    Next Articles

Constitutive models and salt migration mechanisms of saline frozen soil and the-state-of-the-practice countermeasures in cold regions

YuanMing Lai1,2(),ZheMin You1,Jing Zhang1,2   

  1. 1.State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-06-04 Accepted:2020-09-08 Online:2021-02-28 Published:2021-02-07
  • Contact: YuanMing Lai E-mail:ymlai@lzb.ac.cn
  • Supported by:
    the National Key Research and Development Program of China(2018YFC0809605);the National Natural Science Foundation of China(41230630);the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(QYZDY-SSW-DQC015);Science and Technology Plan Project of Tibet(XZ201801-GB-07)

Abstract:

A series of saline soil-related problems, including salt expansion and collapse, frost heave and thaw settlement, threaten the safety of the road traffic and the built infrastructure in cold regions. This article presents a comprehensive review of the physical and mechanical properties, salt migration mechanisms of saline soil in cold environment, and the countermeasures in practice. It is organized as follows: (1) The basic physical characteristics; (2) The strength criteria and constitutive models; (3) Water and salt migration characteristics and mechanisms; and (4) Countermeasures of frost heave and salt expansion. The review provides a holistic perspective for recent progress in the strength characteristics, mechanisms of frost heave and salt expansion, engineering countermeasures of saline soil in cold regions. Future research is proposed on issues such as the effects of salt erosion on concrete and salt corrosion of metal under the joint action of evaporation and freeze-thaw cycles.

Key words: frozen saline soil, strength criteria and constitutive models, salt migration and crystallization, multiple field coupling model, countermeasures

Figure 1

Damage to the infrastructure in cold saline soil regions. (a) Subgrade uplifting, and (b) concrete spalling"

Figure 2

The multiphase compositions of frozen saline soil"

Figure 3

Variations of soil freezing point with salt concentration. (a) Sodium sulfate, (b) chloride sulfate (Wan et al., 2015)"

Figure 4

Variations of the freezing points of sodium sulfate soil and solution with salt concentration (Ma et al., 2017)"

Figure 5

Freezing temperature of the ternary pore-solution of saline soil versus NaCl concentration"

Figure 6

Mirabilite solubility versus temperature"

Figure 7

Thermo-hydro-salt-mechanical interaction mechanism in saline soil"

Figure 8

The two physical embankment models (unit: cm). (a) The crushed-rock embankment model with impermeable geotextile, (b) The ordinary fill embankment model. Pink, green, blue marks indicate temperature, moisture and salt concentration, and deformation sensors, respectively (Ma et al.,2017)"

Agudo ER, Mees F, Jacobs P, et al., 2007. The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates. Environmental Geology, 52: 269-281. DOI: 10.1007/s00254-006-0476-x.
doi: 10.1007/s00254-006-0476-x
Alkire BD, Andersland OB, 1973. The effect of confining pressure on the mechanical properties of sand-ice materials. Journal of Glaciology, 12(66): 469-481. DOI: 10.1017/S0022143000031889.
doi: 10.1017/S0022143000031889
Anderson DM, Tice AR, 1972. Predicting unfrozen water contents in frozen soils from surface area measurements. Highway Research Record, pp. 393.
Baker GC, Osterkamp TE, 1989. Salt redistribution during freezing of saline sand columns at constant rates. Water Resources Research, 25(8): 1825-1831. DOI: 10.1029/WR025i008p01825.
doi: 10.1029/WR025i008p01825
Banin A, Anderson DM, 1974. Effects of salt concentration changes during freezing on the unfrozen water content of porous materials. Water Resources Research, 10(1): 124-128. DOI: 10.1029/WR010i001p00124.
doi: 10.1029/WR010i001p00124
Becker GF, Day AL, 1916. Note on the linear force of growing crystals. The Journal of Geology, 24(4): 313-333.
Bing H, He P, 2011. Experimental study of water and salt redistributions of saline soil with different freezing modes. Rock and Soil Mechanics, 32(8): 2307-2312. DOI: 10.16285/j.rsm.2011.08.037. (in Chinese)
doi: 10.16285/j.rsm.2011.08.037.
Bing H, Ma W, 2011. Laboratory investigation of the freezing point of saline soil. Cold Regions Science and Technology, 67: 79-88. DOI: 10.1016/j.coldregions.2011.02.008.
doi: 10.1016/j.coldregions.2011.02.008
Bragg RA, Andersland OB, 1981. Strain rate, temperature, and sample size effects on compression and tensile properties of frozen soil. Engineering Geology, 18: 35-46.
Cary JW, Mayland HF, 1972. Salt and water movement in unsaturated frozen soil. Soil Science Society of America Journal, 36: 549-555.
Cary JW, 1987. A new method for calculating frost heave including solute effects. Water Resources Research, 23(8): 1620-1624.
Castellazzi G, Colla C, Miranda SD, et al., 2013. A coupled multiphase model for hygrothermal analysis of masonry structures and prediction of stress induced by salt crystallization. Construction and Building Materials, 41: 717-731. DOI: 10.1016/j.conbuildmat.2012.12.045.
doi: 10.1016/j.conbuildmat.2012.12.045
Castellazzi G, Miranda SD, Grementieri L, et al., 2015. Multiphase model for hygrothermal analysis of porous media with salt crystallization and hydration. Materials and Structures, 49(3): 1039-1063. DOI: 10.1617/s11527-015-0557-y.
doi: 10.1617/s11527-015-0557-y
Chamberlain E, Groves C, Perham R, 1972. The mechanical behavior of frozen earth materials under high pressure triaxial test conditions. Geotechnique, 22(3): 469-483. DOI: 10.1680/geot.1972.22.3.469.
doi: 10.1680/geot.1972.22.3.469
Chamberlain E, 1985. Shear strength anisotropy in frozen saline and freshwater soils. Proc.4th International Symposium on Grounding Freezing. Japan: Sapporo, pp. 189-194.
Chai MT, Mu YH, Li GY, et al., 2019. Relationship between ponding and topographic factors along the China-Russia Crude Oil Pipeline in permafrost regions. Sciences in Cold and Arid Regions, 11(6): 419-427. DOI: 10.3724/SP.J. 1226.2019.00419.
doi: 10.3724/SP.J. 1226.2019.00419
Chatterji S, 2005. Aspects of generation of destructive crystal growth pressure. Journal of Crystal Growth, 277: 566-577. DOI: 10.1016/j.jcrysgro.2004.12.036.
doi: 10.1016/j.jcrysgro.2004.12.036
Chen D, Ma W, Li GY, et al., 2019. Definition of failure criterion for frozen soil under directional shear-stress path. Sciences in Cold and Arid Regions, 11(6): 428-434. DOI: 10.3724/SP.J.1226.2019.00428.
doi: 10.3724/SP.J.1226.2019.00428
Chen J, Li DQ, Bing H, et al., 2013. The experimental study of the uniaxial compressive strength of frozen silt with different salt content. Engineering Mechanics, 30(12): 18-23. DOI: 10.6052/j.issn.1000-4750.2012.06.0412. (in Chinese)
doi: 10.6052/j.issn.1000-4750.2012.06.0412.
Chen J, Zhao JY, Li K, et al., 2016. Discussion on applying an analytical method to optimize the anti-freeze design parameters for underground water pipelines in seasonally frozen areas. Sciences in Cold and Arid Regions, 8(6): 467-476. DOI: 10.3724/SP.J.1226.2016.00467.
doi: 10.3724/SP.J.1226.2016.00467
Chen XB, Qiu GQ, Wang YQ, et al., 1989. Salt redistribution and heave of saline soil during cooling. Journal of Glaciology and Geocryology, 11(3): 231-238. (in Chinese)
Correns CW, 1949. Growth and dissolution of crystals under linear pressure. Discussions of the Faraday Society, 5: 267-271. DOI: 10.1039/df9490500267.
doi: 10.1039/df9490500267
Coussy O, 2006. Deformation and stress from in-pore drying-induced crystallization of salt. Journal of the Mechanics Physics of Solids, 54: 1517-1547. DOI: 10.1016/j.jmps. 2006.03.002.
doi: 10.1016/j.jmps. 2006.03.002
Deng YS, He P, Zhou CL, 2004. An experimental research on the thermal conductivity coefficient of saline soil. Journal of Glaciology and Geocryology, 26(3): 319-323. (in Chinese)
Deng YS, He P, Zhou CL, et al., 2006. Experimental study of permeability coefficient of saline soils. Journal of Glaciology and Geocryology, 28(5): 772-775. (in Chinese)
Deng YS, Pu YB, Zhou CL, 2008. Experimental study of structure change of saline soils due to freezing. Journal of Glaciology and Geocryology, 30(4): 632-640. (in Chinese)
Derluyn H, 2012. Salt transport and crystallization in porous limestone: Neutron-X-Ray imaging and poromechanical modelling. Degree of Docter of Sciences, ETH Zurich.
Ding YQ, Chen XB, 1992. An application limit for reducing heave of sulfate saline soil by mixing sodium chloride. Journal of Glaciology and Geocryology, 14(2): 107-114. (in Chinese)
Espinosa RM, Franke L, Deckelmann G, 2008. Phase changes of salts in porous materials: crystallization, hydration and deliquescence. Construction and Building Materials, 22: 1758-1773. DOI: 10.1016/j.conbuildmat.2007.05.005.
doi: 10.1016/j.conbuildmat.2007.05.005
Everett DH, 1961. The thermodynamics of frost damage to porous solids. Transactions of the Faraday Society, 57: 1541-1551.
Fang QY, Chai SX, Li M, et al., 2016. Influence of freezing-thawing cycles on compressive strength and deformation of solidified saline soil. Chinese Journal of Rock Mechanics and Engineering, 35(5): 1041-1047. DOI: 10.13722/j.cnki.jrme.2015.1078. (in Chinese)
doi: 10.13722/j.cnki.jrme.2015.1078.
Fish AM, 1991. Strength of frozen soil under a combined stress state. In: Balkema AA, Rotterdam. (eds.). Proceedings of 6th International Symposium on Ground Freezing, The Netherlands: 1: 135-145.
Flatt RJ, Caruso F, Sanchez AMA, et al., 2014. Chemomechanics of salt damage in stone. Nature Communications, 5823: 1-5. DOI: 10.1038/ncomms5823.
doi: 10.1038/ncomms5823
Gentilini C, Franzoni E, Bandini S, et al., 2012. Effect of salt crystallization on the shear behavior of masonry walls: An experimental study. Construction and Building Materials, 37: 181-189. DOI: 10.1016/j.conbuildmat.2012.07.086.
doi: 10.1016/j.conbuildmat.2012.07.086
Haynes FD, Karalius JA, 1977. Effect of temperature on the strength of frozen silt: CRREL Report 77-3. Hanover, NH: US Army Cold Regions Research and Engineering Laboratory.
He P, Zhu YL, Cheng GD, 2000. Constitutive models of frozen soil. Canadian Geotechnical Journal, 37: 811-816. DOI: 10.1139/cgj-37-4-811.
doi: 10.1139/cgj-37-4-811
Hivon EG, Sego DC, 1995. Strength of frozen saline soils. Canadian Geotechnical Journal, 32: 336-354. DOI: 10.1139/t95-034.
doi: 10.1139/t95-034
Hoek E, Brown ET, Shah SA, 1992. Modified Hoek-Brown Criterion for jointed rock masses. In: Hudson JA (ed.). Proceedings of Eurock'92 Thomas Telford. 209-213.
Hu XT, Yu DM, Fu JT, et al., 2014. Methods and prospect of saline soil improvement. Journal of Salt Lake Research, 22(2): 68-72. (in Chinese)
Huang LD, Xi YW, Li JC, 1997. The feature and prevention of the highway salt dilating distress in the vitriol salinized soil area. China Journal of Highway and Transport, 10(2): 39-47. (in Chinese)
Jessberger HL, 1981. A state-of-the-art report. Ground freezing: Mechanical properties, processes and design. Engineering Geology, 18: 5-30.
Kadlec RH, 1984. Freezing-induced vertical solute movement in peat. Dublin, Ireland: Irish National Peat Committee.
Kong BX, Xu XZ, Lai YM, et al., 2006. Ballast layer height of railway embankment in Qinghai-Tibet Plateau permafrost region. Engineering Mechanics, 23(6): 127-134. DOI: 10.1016/S1872-2040(06)60039-X. (in Chinese)
doi: 10.1016/S1872-2040(06)60039-X.
Koniorczyk M, 2012. Salt transport and crystallization in non-isothermal, partially saturated porous materials considering ions interaction model. International Journal of Heat and Mass Transfer, 55: 665-679. DOI: 10.1016/j.ijheatmasstransfer.2011.10.043.
doi: 10.1016/j.ijheatmasstransfer.2011.10.043
Koniorczyk M, Gawin D, 2012. Modelling of salt crystallization in building materials with microstructure-poromechanical approach. Construction and Building Materials, 36: 860-873. DOI: 10.1016/j.conbuildmat.2012.06.035.
doi: 10.1016/j.conbuildmat.2012.06.035
Koniorczyk M, Konca P, 2013. Experimental and numerical investigation of sodium sulphate crystallization in porous materials. Heat Mass Transfer, 49: 437-449. DOI: 10.1007/s00231-012-1093-8.
doi: 10.1007/s00231-012-1093-8
Koniorczyk M, Gawin D, Schrefler BA, 2015. Modeling evolution of frost damage in fully saturated porous materials exposed to variable hygro-thermal conditions. Computer Methods in Applied Mechanics and Engineering, 297: 38-61. DOI: 10.1016/j.cma.2015.08.015.
doi: 10.1016/j.cma.2015.08.015
Konrad JM, 1990. Segregation potential-pressure-salinity relationships near thermal steady state for a clayey silt. Canadian Geotechnical Journal, 27: 203-215. DOI: 10.1002/pol. 1958.1202711560.
doi: 10.1002/pol. 1958.1202711560
Konrad JM, Mccammon AW, 1990. Solute partitioning in freezing soils. Canadian Geotechnical Journal, 67: 726-736. DOI: 10.1139/t90-086.
doi: 10.1139/t90-086
Lade PV, Duncan JM, 1975. Elastoplastic stress-strain theory for cohesionless soil. Journal of the Geotechnical Engineering Division-ASCE, 101(10): 1037-1053.
Lade PV, Duncan JM, 1978. Elasto-plastic stress-strain theory for cohesionless soil. Journal of Geotechnical and Geoenvironmental Engineering ASCE, 104(1): 139-141.
Lai YM, Zhang LX, Zhang SJ, et al., 2003. Cooling effect of ripped-stone embankments on Qing-Tibet railway under climatic warming. Chinese Science Bulletin, 48(6): 598-604. DOI: 10.1360/03tb9127.
doi: 10.1360/03tb9127
Lai YM, Wang QS, Niu FJ, et al., 2004. Three-dimensional nonlinear analysis for temperature characteristic of ventilated embankment in permafrost regions. Cold Regions Science and Technology, 38(2-3):165-184. DOI: 10.1016/j.coldregions.2003.10.006.
doi: 10.1016/j.coldregions.2003.10.006
Lai YM, Ma WD, Zhang MY, et al., 2006. Experimental investigation on influence of boundary conditions on cooling effect and mechanism of crushed-rock layers. Cold Regions Science and Technology, 45(2): 114-121. DOI: 10.1016/j.coldregions.2006.03.003.
doi: 10.1016/j.coldregions.2006.03.003
Lai YM, Cheng HB, Gao ZH, et al., 2007. Stress-strain relationships and nonlinear mohr strength criterion of frozen sand clay. Chinese Journal of Rock and Engineering, 26(8): 1612-1617. DOI: 10.3208/sandf.50.45. (in Chinese)
doi: 10.3208/sandf.50.45.
Lai YM, Jin L, Chang XX, 2009. Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil. International Journal of Plasticity, 25:1177-1205. DOI: 10. 1016/j.ijplas.2008.06.010.
doi: 10. 1016/j.ijplas.2008.06.010
Lai YM, Zhang MY, Li SY, 2009. Theory and Application of Cold Regions Engineering. Beijing: Science Press. (in Chinese)
Lai YM, Xu XT, Yu WB, et al., 2014. An experimental investigation of the mechanical behavior and a hyperplastic constitutive model of frozen loess. International Journal of Engineering Science, 84: 29-53. DOI: 10.1016/j.ijengsci.2014. 06.011.
doi: 10.1016/j.ijengsci.2014. 06.011
Lai YM, Liao MK, Hu K, 2016. A constitutive model of frozen saline sandy soil based on energy dissipation theory. International Journal of Plasticity, 78: 84-113. DOI: 10.1016/j.ijplas.2015.10.008.
doi: 10.1016/j.ijplas.2015.10.008
Li GY, Yu WB, Ma W, et al., 2009. Experimental study of characteristics of frost and salt heaves of saline highway foundation soils in seasonally frozen regions in Gansu Province. Rock and Soil Mechanics, 30(8): 2276-2280. (in Chinese)
Li YH, 2006. Research on the deformation and strength property of chlorine saline soil. Unpublished M.Sc. Thesis, Northwest A&F University. (in Chinese)
Liao MK, Lai YM, Wang C, 2016. A strength criterion for frozen sodium sulfate saline soil. Canadian Geotechnical Journal, 53(7): 1176-1185. DOI: 10.1139/cgj-2015-0569.
doi: 10.1139/cgj-2015-0569
Marion GM, Farren RE, 1999. Mineral solubilities in the Na-K-Mg-Ca-Cl-SO4-H2O system: a re-evaluation of the sulfate chemistry in the Spencer-Møller-Weare model. Geochim Cosmochim Acta, 63(9): 1305-1318. DOI:1016/S0016-70379900102-7.
doi: 1016/S0016-703799
Ma QG, Lai YM, Wu DY, et al., 2015. Analysis of critical height of railway embankment in permafrost region. China Railway Science, 36(6): 8-15. DOI: 10.3969/j.issn.1001-4632.2015.06.02. (in Chinese)
doi: 10.3969/j.issn.1001-4632.2015.06.02.
Ma QG, Lai YM, Zhang MY, et al., 2017. Model test study on the anti-saline effect of the crushed-rock embankment with impermeable geotextile in frozen saline soil regions. Cold Regions Science and Technology, 141: 86-96. DOI: 10.1016/j.coldregions.2017.06.002.
doi: 10.1016/j.coldregions.2017.06.002
Ma QY, 1996. Tensile strength, uniaxial compressive strength test on artificially frozen soils. Rock and Soil Mechanics, 17(3): 76-81. (in Chinese)
Ma W, Wu ZW, Chang XX, et al., 1996. Strength characteristics of frozen sandy soil under high confining pressure. Journal of Glaciology and Geocryology, 18(3): 268-272. (in Chinese)
Ma W, Wu ZW, Zhang LX, et al., 1999. Analyses of process on the strength decrease in frozen soils under high confining pressures. Cold Regions Science and Technology, 29: 1-7. DOI:10.1016/S0165-232X(98)00020-2.
doi: 10.1016/S0165-232X(98)00020-2
Matsuoka H, Nakai T, 1974. Stress-deformation and strength characteristics of soil under three different principal stresses. Proceedings of the Japanese Society of Civil Engineers, 232: 59-70.
Melnikov AE, Grib NN, 2019. Influence of frost weathering on the recession of surfaces of technogenic landforms in Yakutia. Sciences in Cold and Arid Regions, 11(4): 257-266. DOI: 10.3724/SP.J.1226.2019.00257.
doi: 10.3724/SP.J.1226.2019.00257
Miller DL, Johnson LA, 1990. Pile settlement in saline permafrost: a case history. Quebec: Proceedings of 5th Canadian Permafrost Conference, pp. 371-378.
Nada H, Furukawa Y, 1996. Anisotropic growth kinetics of ice crystals from water studied by molecular dynamics simulation. Journal of Crystal Growth, 169: 587-597. DOI:10.1016/S0022-0248(96)00444-7.
doi: 10.1016/S0022-0248(96)00444-7
Navarro RC, Doehne E, 1999. Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surface Processes and Landforms, 24: 191-209. DOI: 10.1002/(SICI)1096-9837(199903)24:33.0.CO;2-G.
doi: 10.1002/(SICI)1096-9837(199903)24:33.0.CO;2-G
Nguyen TQ, Petkovic J, Dangla P, et al., 2008. Modelling of coupled ion and moisture transport in porous building materials. Construction and Building Materials, 22: 2185-2195. DOI: 10.1016/j.conbuildmat.2007.08.013.
doi: 10.1016/j.conbuildmat.2007.08.013
Padilla F, Villeneuve JP, 1992. Modeling and experimental studies of frost heave including solute effects. Cold Regions Science and Technology, 20: 183-194. DOI:10.1016/0165-232X(92)90016-N.
doi: 10.1016/0165-232X(92)90016-N
Parameswaran VR, Jones SJ, 1981. Triaxial testing of frozen sand. Journal of Glaciology, 27(95): 147-155. DOI:10.3189/S0022143000011308.
doi: 10.3189/S0022143000011308
Panday S, Corapcioglu MY, 1991. Solute rejection in freezing soils. Water Resources Research, 27(1): 99-108. DOI:10.1029/90WR01785.
doi: 10.1029/90WR01785
Pavlik Z, Fiala L, Madera J, et al., 2011. Computational modelling of coupled water and salt transport in porous materials using diffusion-advection model. Journal of the Franklin Institute, 348: 1574-1587. DOI: 10.1016/j.jfranklin.2010.06.014.
doi: 10.1016/j.jfranklin.2010.06.014
Pekarskaya NK, 1963. Shear strength of frozen grounds and its dependence on texture. Moscow: Iad. Akad. Nauk SSSR, SIPRE Transl, 115: 60-77.
Peric D, Ayari MA, 2002. On the analytical solutions for the three-invariant cam-clay model. International Journal of Plasticity, 18: 1061-1082. DOI:10.1016/S0749-6419(01)00028-6.
doi: 10.1016/S0749-6419(01)00028-6
Qi JL, Ma W, 2007. A new criterion for strength of frozen sand under quick triaxial compression considering effect of confining pressure. Acta Geotechnica, 2: 221-226. DOI:10.1007/s11440-007-0034-z.
doi: 10.1007/s11440-007-0034-z
Qiu GQ, Chamberlain E, Iskandar I, 1986. Ion and moisture migration and frost heave in freezing Morin Clay. Journal of Glaciology and Geocryology, 8(1): 1-13. (in Chinese)
Roman LT, 1995. Soil Mechanics & Foundation Engineering, 31(6): 205-210. DOI: 10.1007/BF02335068.
doi: 10.1007/BF02335068
Roscoe KH, Schofield AN, Thurairajah A, 1963. Yielding of clays in states wetter than critical. Geotechnique, 13(3): 210-240. DOI: 10.1680/geot.1963.13.3.211.
doi: 10.1680/geot.1963.13.3.211
Roscoe KH, Burland JB, 1968. On the generalized stress-strain behaviour of wet clay. Engineering Plasticity. In: Heyman J, Leckie FA (eds.). Cambridge: Cambridge University Press.
Sahin U, Angin I, Kiziloglu FM, 2008. Effect of freezing and thawing processes on some physical properties of saline-sodic soils mixed with sewage sludge or fly ash. Soil & Tillage Research, 99: 254-260. DOI: 10.1016/j.still.2008.03.001.
doi: 10.1016/j.still.2008.03.001
Sayles FH, Haines D, 1974. Creep of frozen silt and clay: Technical Report 252. USA Cold Regions Research and Engineering Laboratory.
Sayles FH, Carbee DL, 1981. Strength of frozen silt as a function of ice content and dry unit weight. Engineering Geology, 18: 55-66. DOI: 10.1016/0013-7952(81)90046-6.
doi: 10.1016/0013-7952(81)90046-6
Scherer GW, 1999. Crystallization in pores. Cement and Concrete Research, 29: 1347-1358. DOI: 10.1016/S0008-8846(99)00002-2.
doi: 10.1016/S0008-8846(99)00002-2
Scherer GW, 2004. Stress from crystallization of salt. Cement and Concrete Research, 34: 1613-1624. DOI: 10.1016/j.cemconres.2003.12.034.
doi: 10.1016/j.cemconres.2003.12.034
Shen ZY, Wu ZW, 1999. Basic form of the failure criteria of triaxial strength of frozen soils and its relativity to unfrozen water. Journal of Glaciology and Geocryology, 21(1): 22-26. (in Chinese)
Sheng Y, Zhang LX, Yang CS, et al., 2002. Application of thermal-insulation treatment to roadway engineering in permafrost regions. Journal of Glaciology and Geocryology, 24(5): 618-622. (in Chinese)
Shusherina EP, Bobkov YP, 1969. Effect of moisture content on frozen ground strength. Merzlotnye Issledovaniya, 9: 122-137. DOI: 10.4224/20358850.
doi: 10.4224/20358850
Steiger M, 2005. Crystal growth in porous materials-Ⅰ: The crystallization pressure of large crystals. Journal of Crystal Growth, 282: 455-469. DOI: 10.1016/j.jcrysgro.2005.05.007.
doi: 10.1016/j.jcrysgro.2005.05.007
Steiger M, 2005. Crystal growth in porous materials-II: Influence of crystal size on the crystallization pressure. Journal of Crystal Growth, 282: 470-481. DOI: 10.1016/j.jcrysgro.2005.05.008.
doi: 10.1016/j.jcrysgro.2005.05.008
Steiger M, Asmussen S, 2008. Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4-H2O and generation of stress. Geochimica et Cosmochimica Acta, 72: 4291-4036. DOI: 10.1016/j.gca.2008.05.053.
doi: 10.1016/j.gca.2008.05.053
Tan DS, Sun YM, Hu LX, et al., 2011. Salt expansion properties and mechanism of saline soil in Xinjiang section of Lanzhou-Xinjiang Railway and preventive measures. Journal of the China Railway Society, 33(9): 83-88. DOI: 10.3969/j.issn.1001-8360.2011.09.015. (in Chinese)
doi: 10.3969/j.issn.1001-8360.2011.09.015.
Tsui N, Flatt RJ, Scherer GW, 2003. Crystallization damage by sodium sulfate. Journal of Cultural Heritage, 4: 109-115. DOI: 10.1016/S1296-2074(03)00022-0.
doi: 10.1016/S1296-2074(03)00022-0
Viyalov SS, 1962. The strength and creep of frozen soils. U.S. Army CRREL, Trans. 74.
Vlahou I, Worster MG, 2010. Ice growth in a spherical cavity of a porous medium. Journal of Glaciology, 56(196): 271-277. DOI: 10.3189/002214310791968494.
doi: 10.3189/002214310791968494
Wang HT, 2013. Experimental study on basic engineering properties of Lop Nor saline soil in the condition of freeze-thaw cycle. Xinjiang: Unpublished M.Sc. Thesis, Xinjiang Agricultural University. (in Chinese)
Wan XS, Lai YM, 2013. Experimental study on freezing temperature and salt crystal precipitation of sodium sulphate solution and sodium sulphate saline soil. Chinese Journal of Geotechnical Engineering, 35(11): 2090-2096. DOI: 10.11779/CJGE201512006. (in Chinese)
doi: 10.11779/CJGE201512006.
Wan XS, Lai YM, Wang C, 2015. Experimental study on the freezing temperatures of saline silty Soils. Permafrost and Periglacial Processes, 26: 175-187. DOI: 10.1002/ppp.1837.
doi: 10.1002/ppp.1837
Wan XS, 2015. Laboratory investigation on salt crystals precipitation of sulfate saline soil and salt transfer and salt-heaving mitigation of embankment in cold regions. Unpublished M.Sc. Thesis, University of Chinese Academy of Sciences. (in Chinese)
Wang ZQ, Zhu SQ, Yu RP, et al., 1993. Saline Soil in China, First edition. Beijing: Science Press. (in Chinese)
Wen Z, Sheng Y, Ma W, et al., 2005. Evaluation of EPS application to embankment of Qinghai-Tibetan railway. Cold Regions Science and Technology, 41(3): 235-247. DOI: 10.1016/j.coldregions.2004.11.001.
doi: 10.1016/j.coldregions.2004.11.001
Wen Z, Sheng Y, Ma W, et al., 2005. Analysis on effect of permafrost protection by two-phase closed thermosyphon and insulation jointly in permafrost regions. Cold Regions Science and Technology, 43: 150-163. DOI: 10.1016/j.coldregions.2005.04.001.
doi: 10.1016/j.coldregions.2005.04.001
Wu DY, Lai YM, Zhang MY, 2017. Thermo-hydro-salt-mechanical coupled model for saturated porous media based on crystallization kinetics. Cold Regions Science and Technology, 133: 94-107. DOI: 10.1016/j.coldregions.2016.10.012.
doi: 10.1016/j.coldregions.2016.10.012
Wu ZW, Ma W, Zhang CQ, et al., 1994. Strength characteristics of frozen sandy soil. Journal of Glaciology and Geocryology, 16(1): 15-20. (in Chinese)
Wu ZW, Ma W, 1994. Strength and Creep of Frozen Soil. Lanzhou University Press, Lanzhou. (in Chinese)
Xiao ZA, Lai YM, Zhang MY, 2017. Study on the freezing temperature of saline soil. Acta Geotechnica,13(1): 195-205. DOI: 10.1007/s11440-017-0537-1.
doi: 10.1007/s11440-017-0537-1
Xiao ZA, Lai YM, You ZM, et al., 2017. The phase change process and properties of saline soil during cooling. Arabian Journal for Science and Engineering, 42(9): 3923-3932. DOI: 10.1007/s13369-017-2542-y.
doi: 10.1007/s13369-017-2542-y
Xiao ZA, Lai YM, Zhang J, 2020. A thermodynamic model for calculating the unfrozen water content of frozen soil. Cold Regions Science and Technology, 172: 103011. DOI: 10.1016/j.coldregions.2020.103011.
doi: 10.1016/j.coldregions.2020.103011
Xie SY, Shao JF, 2006. Elastoplastic deformation of a porous rock and water interaction. International Journal of Plasticity, 22: 2195-2225. DOI: 10.1016/j.ijplas.2006.03.002.
doi: 10.1016/j.ijplas.2006.03.002
Xie YL, Yu QH, You YH, et al., 2019. The changing process and trend of ground temperature around tower foundations of Qinghai-Tibet Power Transmission line. Sciences in Cold and Arid Regions, 11(1): 13-20. DOI: 10.3724/SP.J.1226.2019.00013.
doi: 10.3724/SP.J.1226.2019.00013
Xu XZ, Wang JC, Zhang LX, et al., 1995. Mechanisms of Frost Heave and Soil Expansion of Soils. First edition. Science Press, Beijing. (in Chinese)
Xu XZ, Wang JC, Zhang LX, 2010. Frozen Soil Physics. Second edition. Beijing: Science Press. (in Chinese)
Yang YG, Gao F, Lai YM, 2013. Modified Hoek-Brown criterion for nonlinear strength of frozen soil. Cold Regions Science and Technology, 86: 98-103. DOI: 10.1016/j.coldregions.2012.10.010.
doi: 10.1016/j.coldregions.2012.10.010
Yang ZHJ, 2019. Intersection-pavement de-icing: comprehensive review and the state of the practice. Sciences in Cold and Arid Regions, 11(1): 1-12. DOI: 10.3724/SP.J.1226.2019.00001.
doi: 10.3724/SP.J.1226.2019.00001
Yao YP, Hou W, Zhou AN, 2009. UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique, 59(5): 451-469. DOI: 10.1680/geot.2007.00029.
doi: 10.1680/geot.2007.00029
Yu YY, Zhao DA, Peng DH, et al., 2009. Experimental research on frost heave and salt expansion of the improved saline soil of railway roadbed filling at south of Xinjiang. Journal of Lanzhou Jiaotong University, 28(1): 1-5. (in Chinese)
Zhang DF, Wang SJ, 2000. Mechanism of freeze-thaw action in land salinization process-as an example in west Jilin province. Bulletin of Soil and Water Conservation, 20(6): 14-17. (in Chinese)
Zhang J, Lai YM, Li JF, et al., 2020. Study on the influence of hydro-thermal-salt-mechanical interaction in saturated frozen sulfate saline soil based on crystallization kinetics. International Journal of Heat and Mass Transfer, 146: 118868. DOI: 10.1016/j.ijheatmasstransfer.2019.118868.
doi: 10.1016/j.ijheatmasstransfer.2019.118868
Zhang MY, Zhang JM, Lai YM, 2004. Numerical analysis of the critical height of railway embankment in permafrost regions of the Tibetan Plateau. Journal of Glaciology and Geocryology, 26(3): 312-318. (in Chinese)
Zhang MY, Lai YM, Niu FJ, et al., 2006. A numerical model of the coupled heat transfer for duct-ventilated embankment under wind action in cold regions and its application. Cold Regions Science and Technology, 45(2): 103-113. DOI: 10.1016/j.coldregions.2006.03.002.
doi: 10.1016/j.coldregions.2006.03.002
Zhang MY, Lai YM, Yu WB, et al., 2007. Experimental study on influence of particle size on cooling effect of crushed-rock layer under closed and open tops. Cold Regions Science and Technology, 48(3): 232-238. DOI: 10.1016/j.coldregions.2006.12.003.
doi: 10.1016/j.coldregions.2006.12.003
Zhang SJ, Lai YM, Li SY, et al., 2008. Dynamic strength of frozen soils. Chinese Journal of Geotechnical Engineering, 30(4): 595-599. DOI: 10.3901/JME.2008.10.294 (in Chinese)
doi: 10.3901/JME.2008.10.294
Zhang XD, Wang Q, Yu TW, et al., 2018. Numerical study on the multifield mathematical coupled model of hydraulic-thermal-salt-mechanical in saturated freezing saline soil. International Journal of Geomechanics, 18(7): 04018064. DOI: 10.1061/(ASCE)GM.1943-5622.0001173.
doi: 10.1061/(ASCE)GM.1943-5622.0001173
Zhang Y, Fang JH, Liu JK, et al., 2011. Field tests on reinforcement effects of ground treatment of composite foundation in saline soils by dynamic compaction replacement. Chinese Journal of Geotechnical Engineering, 33(S1): 251-254. DOI: http://dx.doi.org/. (in Chinese)
doi: .
Zhang Y, Liu JK, Fang JH, et al., 2017. Deformation properties of chloride saline soil under action of a low-temperature environment and different loads. Sciences in Cold and Arid Regions, 9(3): 307-311. DOI: 10.3724/SP.J.1226.2017.00307.
doi: 10.3724/SP.J.1226.2017.00307
Zhao YH, Lai YM, Pei WS, et al., 2020a. An anisotropic bounding surface elastoplastic constitutive model for frozen sulfate saline silty clay under cyclic loading. International Journal of Plasticity, 129: 102668. DOI: 10.1016/j.ijplas.2020.102668.
doi: 10.1016/j.ijplas.2020.102668
Zhao YH, Lai YM, Zhang J, et al., 2020b. A bounding surface model for frozen sulfate saline silty clay considering rotation of principal stress axes. International Journal of Mechanical Sciences, 177: 105570. DOI: 10.1016/j.ijmecsci.2020.105570.
doi: 10.1016/j.ijmecsci.2020.105570
Zhao YH, Lai YM, Zhang J, et al., 2020c. A dynamic strength criterion for frozen sulfate saline silty clay under cyclic loading. Cold Regions Science and Technology, 173: 103026. DOI: 10.1016/j.coldregions.2020.103026.
doi: 10.1016/j.coldregions.2020.103026
Zhu YL, Carbee DL, 1984. Uniaxial compressive strength of frozen silt under constant deformation rates. Cold Regions Science and Technology, 9: 3-15. DOI: https://doi.org/10.1016/0165-232X(84)90043-0.
doi: 10.1016/0165-232X(84)90043-0
[1] ZhiWen Xiong, YongPeng Yang, ZhaoRong Zhu, XiangQing Zhao, HanCheng Cai. Effect of climate change and railway embankment on the degradation of underlain permafrost [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 554-559.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] Yong Chen, Tao Wang, LiHua Zhou, Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .