Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (6): 436-446.doi: 10.3724/SP.J.1226.2020.00436

Previous Articles     Next Articles

Manifestations and mechanisms of mountain glacier-related hazards

Xin Wang1(),Qiao Liu2,ShiYin Liu3,GuangLi He1   

  1. 1.School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411100, China
    2.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610000, China
    3.Institute of International Rivers and Eco-Security, Yunnan University, Kunming, Yunnan 650091, China
  • Received:2020-09-26 Accepted:2020-12-01 Online:2020-12-31 Published:2021-01-14
  • Contact: Xin Wang
  • Supported by:
    the Ministry of Science and Technology(2018YFE010010002);the National Natural Science Foundation of China(41771075)


Mountain glacier-related hazards occur worldwide in response to increasing glacier instability and human activity intensity in modern glacierized regions. These hazards are characterized by their spatial aggregation and temporal repeatability. Comprehensive knowledge about mountain glacier-related hazards is critical for hazard assessment, mitigation, and prevention in the mountain cryosphere and downstream regions. This article systematically schematizes various mountain glacier-related hazards and analyzes their inherent associations with glacier changes. Besides, the processes, manifestations, and mechanisms of each of the glacier-related hazards are summarized. In the future, more extensive and detailed systematic surveys, for example, considering integrated ground-air-space patterns, should be undertaken for typical glacierized regions to enhance existing knowledge of such hazards. The use of coupled numerical models based on multi-source data is challenging but will be essential to improve our understanding of the complex chain of processes involved in thermal-hydrogeomorphic glacier-related hazards in the mountain cryosphere.

Key words: glacier-related hazards, mountain cryosphere, glacier changes

Figure 1

Schematic illustration of the relationships between different types of mountain glacier-related hazards"

Figure 2

Characteristic volumes and return periods of different mountain glacier-related hazards (revised from Huggel et al., 2012)"

Figure 3

Representative types of flood hydrographs in mountain cryosphere regions"

Table 1

Types of glacier-related debris flow, categorized by their causes of formation (revised from Deng et al., 1988; Lü et al., 1999; Shi et al.,2000; Evans and Delaney, 2015; GAPHAZ, 2017)"

TypeSubclassFormation of water sourceCharacteristics of activity
Meltwater inducedGlacier meltwaterFloods caused by the strong ice meltingIt happens frequently and widely in modern glacier basins and it usually occurs in the afternoon or at night on a sunny day in summer.
Snow meltwaterFloods caused by snow meltingIt usually occurs when temperature rapidly rises in spring or the beginning of summer.
Glacier lake outburst inducedMoraine-dammed lake outburstThe sudden drainage of the moraine-dammed lakeIt usually bursts out massively and hardly repeats; it firstly initiates in the state of viscous debris flow and then gradually develops in diluted debris flow.
Glacier-dammed lake outburstSudden drainage of glacier-blocked lakeFeatures are similar to the debris flow induced by an outburst of the glacial moraine-dammed lake except that may be characterized by repetition and periodicity.
Englacial lake outburstSudden drainage of englacial lakeFeatures are similar to the debris flow induced by other GLOFs except it occurs in all seasons and relatively small magnitude.
Ice/snow avalanche inducedDeposit of ice avalancheFlood caused by melting of the deposits of ice avalancheIt forms downward the tongue of ice in most cases and usually occurs in spring and summer with small magnitude and infrequency.
Blocked by Ice avalancheOutburst flood from river channel or valley blocked by ice avalancheIt happens more suddenly with less magnitude and frequency than other types of glacier-related debris flows.
Rainfall or rainfall mixed with ice/snow melt inducedFloods caused by Rainfall or rainfall mixed with ice/snow melt waterIt usually occurs in rainy and warmer seasons; it is the most frequently and widely occurring type among the glacial debris flows.

Figure 4

Types of Ice avalanche (left: ramp-type, right: cliff-type)"

Alean J, 1985. Ice avalanches: some empirical information about their formation and reach. Journal of Glaciology, 31(109): 324-333. DOI: 10.3189/s0022143000006663.
doi: 10.3189/s0022143000006663
Allen SK, Cox SC, Owens LF, 2011. Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional study considering possible climate change impacts. Landslides, 8(1): 33-48. DOI: 10.1007/s10346-010-0222-z.
doi: 10.1007/s10346-010-0222-z
Allen SK, Zhang GQ, Wang WC, et al., 2019. Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach. Science Bulletin, 64(7): 435-445. DOI: 10.1016/j.scib.2019.03.011.
doi: 10.1016/j.scib.2019.03.011
Benn DI, Fowler AC, Hewitt L, et al., 2019. A general theory of glacier surges. Journal of Glaciology, 65(253): 701-716. DOI: 10.1017/jog.2019.62.
doi: 10.1017/jog.2019.62
Benn D, Evans DJA, 2010. Glaciers and Glaciation. London: Saffron House, 2nd Edition, pp: 57-106.
Bhambri R, Hewitt K, Kawishwar P, et al., 2017. Surge-type and surge-modified glaciers in the Karakoram. Scientific Reports, 7(1): 1-14. DOI: 10.1038/s41598-017-15473-8.
doi: 10.1038/s41598-017-15473-8
Bhambri R, Watson CS, Hewitt K, et al., 2020. The hazardous 2017-2019 surge and river damming by Shispare Glacier, Karakoram. Scientific reports, 10(1): 1-14. DOI: 10.1038/s41598-020-61277-8.
doi: 10.1038/s41598-020-61277-8
Björnsson H, 1998. Hydrological characteristics of the drainage system beneath a surging glacier. Nature, 395: 771-774. DOI: 10.1038/27384.
doi: 10.1038/27384
Björnsson H, Pálsson F, Sigurđsson O, et al., 2003. Surges of glaciers in Iceland. Annals of Glaciology, 36: 82-90. DOI: 10.3189/172756403781816365.
doi: 10.3189/172756403781816365
Bolch T, Kulkarni A, Kääb A, et al., 2012. The state and fate of Himalayan glaciers. Science, 336(6079): 310-314. DOI: 10.1126/science.1215828.
doi: 10.1126/science.1215828
Carrivick JL, Tweed FS, 2016. A global assessment of the societal impacts of glacier outburst floods. Global and Planetary Change, 144: 1-16. DOI: 10.1016/j.gloplacha.2016. 07.001.
doi: 10.1016/j.gloplacha.2016. 07.001
Raymond CF, 1987. How do glaciers surge? A review. Journal of Geophysical Research, 92(B9): 9121-9134. DOI: 10. 1029/JB092iB09p09121.
doi: 10. 1029/JB092iB09p09121
Chiarle M, Iannotti S, Mortara G, et al., 2007. Recent debris flow occurrences associated with glaciers in the Alps. Global and Planetary Change, 56(1-2): 123-136. DOI: 10.1016/j.gloplacha.2006.07.003.
doi: 10.1016/j.gloplacha.2006.07.003
Clarke GKC, Hambrey MJ, 2019. Structural evolution during cyclic glacier surges: 2. Numerical modeling. Journal of Geophysical Research: Earth Surface, 124(2): 495-525. DOI: 10.1029/2018jf004870.
doi: 10.1029/2018jf004870
Cuffey KM, Paterson WSB, 2010. The Physics of Glaciers (fourth edition). Oxford: Elsevier Science Ltd., pp. 137-173.
Cui P, Chen XQ, Cheng ZL, et al., 2010. Monitoring and prevention of debris-flows and landslides in Tibet. Chinese Journal of Nature, 32 (1): 19-25. DOI: 10.3969/j.issn.0253-9608.2010.01.005. (in Chinese)
doi: 10.3969/j.issn.0253-9608.2010.01.005.
Dehecq A, Gourmelen N, Gardner AS, et al., 2019. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nature Geoscience, 12(1): 22-27. DOI: 10.1038/s41561-018-0271-9.
doi: 10.1038/s41561-018-0271-9
Deng YX, 1988. Glacial debris-flow and glacial lake outburst flood in China. In:Shi Y (ed..
An Introduction to the Glaciers in China. Beijing: Science Press, pp. 205-221.
Evans SG, Clague JJ, 1994. Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology, 10: 107-128. DOI:10.1016/0169-555x(94)90011-6.
doi: 10.1016/0169-555x(94)90011-6
Evans SG, Delaney KB, 2015. Catastrophic Mass Flows in the Mountain Glacial Environment, in Snow and Ice-Related Hazards, Risks, and Disasters, In: Haeberli W, Whiteman C, (eds.). Pittsburgh: Elsevier, pp. 563-606.
Faillettaz J, Funk M, Vincent C, 2015. Avalanching glacier instabilities: Review on processes and early warning perspectives. Reviews of Geophysics, 53(2): 203-224. DOI: 10. 1002/2014rg000466.
doi: 10. 1002/2014rg000466
Faillettaz J, Funk M, Sornette D, 2012. Instabilities on Alpine temperate glaciers: new insights arising from the numerical modelling of Allalingletscher (Valais, Switzerland). Natural Hazards and Earth System Sciences, 12(9): 2977-2991. DOI:10.5194/nhess-12-2977-2012.
doi: 10.5194/nhess-12-2977-2012
Fischer L, Eisenbeiss H, Kääb A, et al., 2011. Monitoring topographic changes in a periglacial high‐mountain face using high‐resolution DTMs, Monte Rosa East Face, Italian Alps. Permafrost and Periglacial Processes, 22(2): 140-152. DOI: 10.1002/pp.717.
doi: 10.1002/pp.717
Fischer L, Huggel C, Kääb A, et al., 2013. Slope failures and erosion rates on a glacierized high‐mountain face under climatic changes. Earth Surface Processes and Landforms, 38(8): 836-846. DOI: 10.1002/esp.3355.
doi: 10.1002/esp.3355
Fujita K, Nuimura T, 2011. Spatially heterogeneous wastage of Himalayan glaciers. Proceedings of the National Academy of Sciences, 108(34): 14011-14014. DOI: 10.1073/pnas. 1106242108.
doi: 10.1073/pnas. 1106242108
Fujita K, Inoue H, Izumi T, et al., 2017. Anomalous winter-snow-amplified earthquake-induced disaster of the 2015 Langtang avalanche in Nepal. Natural Hazards and Earth System Sciences, 17(5): 749-764. DOI: 10.5194/nhess-17-749-2017.
doi: 10.5194/nhess-17-749-2017
Gao J, Yao TD, Masson-Delmotte V, et al., 2019. Collapsing glaciers threaten Asia's water supplies. Nature, 565(7737):19-21. DOI: 10.1038/d41586-018-07838-4.
doi: 10.1038/d41586-018-07838-4
Gardelle J, Berthier E, Arnaud Y, et al., 2013. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. The Cryosphere, 7: 1263-1286. DOI: 10.5194/tc-7-1885-2013.
doi: 10.5194/tc-7-1885-2013
Gardner AS, Moholdt G, Cogley JG, et al., 2013. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134): 852-857. DOI: 10.1126/science. 1234532.
doi: 10.1126/science. 1234532
Gaphaz, 2017. Assessment of Glacier and Permafrost Hazards in Mountain Regions-Technical Guidance Document. Standing Group on Glacier and Permafrost Hazards in Mountains (GAPHAZ) of the International Association of Cryospheric Sciences (IACS) and the International Permafrost Association (IPA). Zurich, Switzerland / Lima, Peru, pp. 72.
Goerlich F, Bolch T, Paul F, 2020. More dynamic than expected: an updated survey of surging glaciers in the Pamir. Earth System Science Data, 12(4): 3161-3176. DOI: 10.5194/essd-12-3161-2020.
doi: 10.5194/essd-12-3161-2020
Haeberli W, Huggel C, Kääb A, et al., 2004. The Kolka-Karmadon rock/ice slide of 20 September 2002: an extraordinary event of historical dimensions in North Ossetia, Russian Caucasus. Journal of Glaciology, 50(171): 533-546. DOI: 10.3189/172756504781829710.
doi: 10.3189/172756504781829710
Haeberli W, Whiteman C, 2015. Snow and Ice-related Hazards, Risks, and Disasters: a General Framework. Pittsburgh: Academic Press, pp. 1-34.
Harrison S, Kargel JS, Huggel C, et al., 2018. Climate change and the global pattern of moraine-dammed glacial lake outburst floods. The Cryosphere, 12(4): 1195-1209. DOI: 10.5194/tc-12-1195-2018.
doi: 10.5194/tc-12-1195-2018
Huggel C, 2009. Recent extreme slope failures in glacial environments: effects of thermal perturbation. Quaternary Science Reviews, 28(11-12): 1119-1130. DOI: 10.1016/j.quascirev.2008.06.007.
doi: 10.1016/j.quascirev.2008.06.007
Huggel C, Allen S, Deline P, et al., 2012. Ice thawing, mountains falling—are alpine rock slope failures increasing? Geology Today, 28(3): 98-104. DOI: 10.1111/j.1365-2451. 2012.00836.x.
doi: 10.1111/j.1365-2451. 2012.00836.x
Huss M, Hock R, 2018. Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8: 135-140. DOI: 10.1038/s41558-017-0049-x.
doi: 10.1038/s41558-017-0049-x
Immerzeel WW, Van Beek LPH, Bierkens MFP, 2010. Climate change will affect the Asian water towers. Science, 328(5984): 1382-1385. DOI: 10.1126/science.1183188.
doi: 10.1126/science.1183188
Immerzeel WW, Lutz AF, Andrade M, et al., 2020. Importance and vulnerability of the world's water towers. Nature, 577(7790): 364-369. DOI: 10.1038/s41586-019-1822-y.
doi: 10.1038/s41586-019-1822-y
Jiskoot H, Boyle P, Murray T, 1998. The incidence of glacier surging in Svalbard: evidence from multivariate statistics. Computers & Geosciences, 24(4): 387-399. DOI: 10.1016/s0098-3004(98)00033-8.
doi: 10.1016/s0098-3004(98)00033-8
Jomelli V, Brunstein D, Grancher D, et al., 2007. Is the response of hill slope debris flows to recent climate change univocal? A case study in the Massif des Ecrins (French Alps). Climatic Change, 85(1-2): 119-137. DOI: C10.1007/s10584-006-9209-0.
doi: C10.1007/s10584-006-9209-0
Kamb B,Raymond CF,Harrison WD, et al., 1985. Glacier surge mechanism: 1982-1983 surge of variegated glacier, Alaska. Science, 227(4686):469-479. DOI: 10.1126/science.227. 4686.469.
doi: 10.1126/science.227. 4686.469
Kääb A, Treichler D, Nuth C, et al., 2015. Brief Communication: Contending estimates of 2003-2008 glacier mass balance over the Pamir-Karakoram-Himalaya. Cryosphere, 9(2): 557-564. DOI: 10.5194/tc-9-557-2015.
doi: 10.5194/tc-9-557-2015
Kääb A, Leinss S, Gilbert A, et al., 2018. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nature Geoscience, 11(2): 114-120. DOI: 10.1038/s41561-017-0039-7.
doi: 10.1038/s41561-017-0039-7
Lü R, Tang B, Li D, 1999. Introduction of debris flow resulted from glacial lakes failed. In: Lv R, Tang B, Zhu P (eds..
Debris flow and environment in Tibet. Chengdu, China: Sichuan University Publishing House, pp. 69-105.
Mccoll ST, 2012. Paraglacial rock-slope stability. Geomorphology, 153: 1-16. DOI: 10.1016/j.geomorph.2012.02.015.
doi: 10.1016/j.geomorph.2012.02.015
Mergili M, Emmer A, Juřicová A, et al., 2018. How well can we simulate complex hydro‐geomorphic process chains? The 2012 multi‐lake outburst flood in the Santa Cruz Valley (Cordillera Blanca, Perú). Earth Surface Processes and Landforms, 43(7): 1373-1389. DOI: 10.1002/esp.4318.
doi: 10.1002/esp.4318
Murray T, Strozzi T, Luckman A, et al., 2003. Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions. Journal of Geophysical Research, 108(5): 2237. DOI: 10.1029/2002JB001906.
doi: 10.1029/2002JB001906
Nie Y, Sheng YW, Liu Q, et al., 2017. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sensing of Environment, 189: 1-13. DOI: 10.1016/j.rse.2016.11.008.
doi: 10.1016/j.rse.2016.11.008
Perov V, Chernomorets S, Budarina O, et al., 2017. Debris flow hazards for mountain regions of Russia: regional features and key events. Natural Hazards, 88(1): 199-235. DOI: 10.1007/s11069-017-2841-3.
doi: 10.1007/s11069-017-2841-3
Pritchard HD, 2019. Asia's shrinking glaciers protect large populations from drought stress. Nature, 569(7758): 649-654. DOI: 10.1038/s41586-019-1240-1.
doi: 10.1038/s41586-019-1240-1
Rebetez M, Lugon R, Baeriswyl PA, 1997. Climatic change and debris flows in high mountain regions: the case study of the Ritigraben torrent (Swiss Alps). DOI: 10.1023/A:1005356130392.
doi: 10.1023/A:1005356130392
RGI C, Inventory RG, 2017. A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Colorado, USA. Digital Media, 10.
Rounce DR, Hock R, Shean D, 2019. Glacier mass change in high mountain Asia through 2100 using the open-source Python Glacier Evolution Model (PyGEM). Frontiers in Earth Science, 7: 331. DOI: 10.3389/feart.2019.00331.
doi: 10.3389/feart.2019.00331
Round V, Leinss S, Huss M, et al., 2017. Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram. The Cryosphere, 11(2): 723-739. DOI: 10.5194/tc-11-723-2017.
doi: 10.5194/tc-11-723-2017
Sakai A, Takeuchi N, Fujita K, et al., 2000. Role of supraglacial ponds in the ablation process of a debris-covered glacier in Nepal. International Association of Hydrological Sciences Publication264 (Symposium at Seattle2000, debris-covered glaciers), 119-130.
Schaefli B, Manso P, Fischer M, et al., 2019. The role of glacier retreat for Swiss hydropower production. Renewable Energy, 132: 615-627. DOI: 10.1016/j.renene.2018.07.104.
doi: 10.1016/j.renene.2018.07.104
Schneider D, Huggel C, Cochachin A, et al., 2014. Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Advances in Geosciences. 35: 145-155. DOI: 10.5194/adgeo-35-145-2014.
doi: 10.5194/adgeo-35-145-2014
Seinova IB, Andreev YB, Krylenko IN, et al., 2011. Regional short-term forecast of debris flow initiation for glaciated high mountain zone of the Caucasus. Debris-flow hazards mitigation: mechanics, prediction, and assessment. Proceedings of 5th International Conference. Padua, Italy, pp. 14-17.
Sevestre H, Benn DI, 2015. Climatic and geometric controls on the global distribution of surge-type glaciers: implications for a unifying model of surging. Journal of Glaciology, 61(228): 646-662. DOI: 10.3189/2015JoG14J136.
doi: 10.3189/2015JoG14J136
Sharp M, 1988. Surging glaciers: behaviour and mechanisms. Progress in Physical Geography, 12: 349-370. DOI: 10. 1177/030913338801200302.
doi: 10. 1177/030913338801200302
Shi YF, Huang MH, Yao TD, 2000. Glaciers and the Environment in China-Present, Past and Future. Science Press, Beijing.
Stoffel M, Bollschweiler M, Beniston M, 2011. Rainfall characteristics for periglacial debris flows in the Swiss Alps: past incidences-potential future evolutions. Climatic Change, 105(1-2): 263-280. DOI: 10.1007/s10584-011-0036-6.
doi: 10.1007/s10584-011-0036-6
Tong LQ, Tu JN, Pei LX, et al., 2018. Preliminary discussion of the frequently debris flow events in Sedongpu Basin at Gyalaperi peak, Yarlung Zangbo River. Journal of Engineering Geology, 26(6): 1552-1561. DOI: 10.13544/j.cnki.jeg.2018-401.
doi: 10.13544/j.cnki.jeg.2018-401
Veh G, Korup O, Von Specht S, et al., 2019. Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. Nature Climate Change, 9(5): 379-383. DOI: 10.1038/s41558-019-0437-5.
doi: 10.1038/s41558-019-0437-5
Veh G, Korup O,Walz A, 2020. Hazard from Himalayan glacier lake outburst floods. Proceedings of the National Academy of Sciences, 117(2): 907-912. DOI: 10.1073/pnas. 1914898117.
doi: 10.1073/pnas. 1914898117
Wang WC, Yao TD, Gao Y, et al., 2011. A first-order method to identify potentially dangerous glacial lakes in a region of the southeastern Tibetan Plateau. Mountain Research and Development, 31(2): 122-130. DOI: 10. 1659/MRD-JOURNAL-D-10-00059.1.
doi: 10. 1659/MRD-JOURNAL-D-10-00059.1
Wang X, Liu SY, Ding YJ, et al., 2012. An approach for estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using remote-sensing data. Natural Hazards & Earth System Sciences, 12(10): 3109-3122. DOI: 10. 5194/nhess-12-3109-2012.
doi: 10. 5194/nhess-12-3109-2012
Wang X, Liu SY, Ding YJ, 2016. Study on the Methods and Applications of Outburst Hazard Assessment for Moraine Lakes in The Himalayas of China. Beijing, Science Press, pp. 324.
Wang X, Xie ZC, Li QY, et al., 2008. Sensitivity analysis of glacier systems to climate warming in China. Journal of Geographical Sciences, 18(2): 190-200. DOI:10.1007/s11442-008-0190-6.
doi: 10.1007/s11442-008-0190-6
Wu GJ, Yao TD, Wang WC, et al., 2019. Glacial hazards on Tibetan Plateau and surrounding alpines. Bulletin of the Chinese Academy of Sciences, 34(11): 1285-1292. DOI:10.16418/j.issn.1000-3045.2019.11.011.
doi: 10.16418/j.issn.1000-3045.2019.11.011
Yao TD, Thompson L, Yang W, et al., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9): 663-667. DOI: 10.1038/nclimate1580.
doi: 10.1038/nclimate1580
Zemp M, Frey H, Gärtner-Roer I, et al., 2015. Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228): 745-762. DOI: 10.3189/2015jog15j017.
doi: 10.3189/2015jog15j017
Zemp M, Huss M, Thibert E, et al., 2019. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568(7752): 382-386. DOI: 10.1038/s41586-019-1071-0.
doi: 10.1038/s41586-019-1071-0
Zhang Z, Liu SY, Wei JF, 2016. Monitoring recent surging of the Karayaylak Glacier in Pamir by remote sensing. Journal of Glaciology and Geocryology, 38(1): 11-20. DOI: CNKI:SUN:BCDT.0.2016-01-002.
doi: CNKI:SUN:BCDT.0.2016-01-002
No related articles found!
Full text



[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] Yong Chen, Tao Wang, LiHua Zhou, Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .