Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (3): 268-270.doi: 10.3724/SP.J.1226.2021.21034.

Previous Articles    

Linkages between soil microbial stability and carbon storage in the active layer under permafrost degradation

ShengYun Chen1,2,MingHui Wu1,3,Yu Zhang2,Kai Xue3   

  1. 1.Cryosphere and Eco-Environment Research Station of Shule River Headwaters, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.Long-term National Scientific Research Base of the Qilian Mountain National Park, Xining, Qinghai 810000, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-06-19 Accepted:2021-06-27 Online:2021-06-30 Published:2021-07-05
  • Supported by:
    the National Natural Science Foundation of China(41871064);the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0304)

Figure 1

The logical framework showing the main results"

Chen SY, Liu WJ, Qin X, et al., 2012. Response characteristics of vegetation and soil environment to permafrost degradation in the upstream regions of the Shule River Basin. Environmental Research Letters, 7(4): 045406. DOI: 10.1088/1748-9326/7/4/045406.
doi: 10.1088/1748-9326/7/4/045406
Chen YL, Deng Y, Ding JZ, et al., 2017. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Molecular Ecology, 26(23): 6608-6620. .
DeConto RM, Galeotti S, Pagani M, et al., 2012. Past extreme warming events linked to massive carbon release from thawing permafrost. Nature, 484(7392): 87-91.
Hale L, Feng WT, Yin HQ, et al., 2019. Tundra microbial community taxa and traits predict decomposition parameters of stable, old soil organic carbon. The ISME Journal, 13(12): 2901-2915. .
Liu FT, Kou D, Abbott BW, et al., 2019. Disentangling the effects of climate, vegetation, soil and related substrate properties on the biodegradability of permafrost-derived dissolved organic carbon. Journal of Geophysical Research: Biogeosciences, 124(11): 3377-3389. .
Schuur EAG, McGuire AD, Schädel C, et al., 2015. Climate change and the permafrost carbon feedback. Nature, 520(7546): 171-179.
Shur YL, Jorgenson MT, 2007. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafrost and Periglacial Processes, 18(1): 7-19.
Wang TH, Yang DW, Yang YT, et al., 2020. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Science Advances, 6(19): eaaz3513.
Wu MH, Chen SY, Chen JW, et al., 2021. Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proceedings of the National Academy of the Sciences of the United States of America, 118(25): e2025321118. .
Xue K, Yuan MM, Shi ZJ, et al., 2016. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Climate Change, 6(6): 595-600.
Yang MX, Nelson FE, Shiklomanov NI, et al., 2010. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Science Review, 103(1-2): 31-44.
Zou DF, Zhao L, Sheng Y, et al., 2017. A new map of the permafrost distribution on the Tibetan Plateau. The Cryosphere, 11(6): 2527-2542.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] Yong Chen, Tao Wang, LiHua Zhou, Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .