Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (6): 477-490.doi: 10.3724/SP.J.1226.2020.00477

Previous Articles     Next Articles

Thickness estimation of the Longbasaba Glacier: methods and application

GuangLi He1,JunFeng Wei1(),Xin Wang1,2   

  1. 1.School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411100, China
    2.State Key Laboratory of Cryospheric Science, Northwest Institute of Ecology and Environmental Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2020-09-01 Accepted:2020-12-15 Online:2020-12-31 Published:2021-01-14
  • Contact: JunFeng Wei
  • Supported by:
    the National Natural Science Foundation of China(41701061)


A total of 71,177 glaciers exist on the Qinghai-Tibet Plateau, according to the Randolph Glacier Inventory (RGI 6.0). Despite their large number, glacier ice thickness data are relatively scarce. This study utilizes digital elevation model data and ground-penetrating radar thickness measurements to estimate the distribution and variation of ice thickness of the Longbasaba Glacier using Glacier bed Topography (GlabTop), a full-width expansion model, and the Huss and Farinotti (HF) model. Results show that the average absolute deviations of GlabTop, the full-width expansion model, and the HF model are 9.8, 15.5, and 10.9 m, respectively, indicating that GlabTop performs the best in simulating glacier thickness distribution. During 1980-2015, the Longbasaba Glacier thinned by an average of 7.9±1.3 m or 0.23±0.04 m/a, and its ice volume shrunk by 0.28±0.04 km3 with an average reduction rate of 0.0081±0.0001 km3/a. In the investigation period, the area and volume of Longbasaba Lake expanded at rates of 0.12±0.01 km2/a and 0.0132±0.0018 km3/a, respectively. This proglacial lake could potentially extend up to 5,000 m from the lake dam.

Key words: Longbasaba Glacier, ice thickness distribution, ice volume change, glacial lake retention role, glacial lake expansion

Figure 1

Location and characteristics of the study area: (a) glacier location; (b) contact of the end of the Longbasaba Glacier with the glacial lake, ice floes show a small amount of newly collapse; (c) profiles of GPR survey conducted on the Longbasaba Glacier in July 2009 with Landsat 5 image from December 30, 2010, as the background"

Table 1

Overview of the satellite imagery and data sources used in the study"

SourceDatePixel size (m)Utilization
Landsat ETM+December 26, 200030 mGlacier boundary
Landsat TMDecember 30, 201030 mGlacier boundary
Landsat OLIDecember 28, 201530 mGlacier boundary
Topographic map198030 mGlacier boundary, glacier surface elevation
SRTM200030 mGlacier surface elevation
ALOS201030 mGlacier surface elevation
TanDEM-X201530 mGlacier surface elevation

Figure 2

Ice thickness distributions of the Longbasaba Glacier in 2010 obtained using. (a) The GlabTop model, (b) the full-width expansion model, and (c) the HF-model"

Figure 3

Comparison of measured ice thickness of the Longbasaba Glacier in 2010 with thickness estimated using. (a) GlabTop, (b) the full-width expansion model, and (c) the HF-model"

Figure 4

Ice thickness distribution of the Longbasaba Glacier by Glabtop: (a) 1980, (b) 2000, (c) 2010, and (d) 2015"

Figure 5

Changes in ice volume and lake storage"

Figure 6

The centerline profiles of the glacier bed, ice thickness, and lake depth. V1 represents the lake water volume before the fusion line at the merge location, and V2 represents the lake water volume after the fusion line. V1 is from the glacier bed of 2009, and V2 is from the bed of 1980"

Table 2

Area and volume of the Longbasaba Glacier from 1980 to 2015"

YearArea (km2)Ice volume (km3)

Table 3

Sensitivity analysis and parameter setting of ice thickness estimation models"

Parameter changeSensitivityParameter valueUnit
?f=+10%-9.1%0.8No unit
?m=+10%-3.3%5.5No unit
?n=+10%-40.7%2.2No unit
?C=+10%-4.7%0.53No unit
?fdebris=+10%+2.7%0.5No unit

Table 4

Changes of area and storage volume of the Lake Longbasaba from 1980 to 2015"

YearArea (km2)Storage volume (km3)Storage change (km3)
Bahr DB, Meier MF, Peckham SD, 1997. The physical basis of glacier volume‐area scaling. Journal of Geophysical Research: Solid Earth, 102(B9): 20355-20362. DOI: 10.1029/97jb01696.
doi: 10.1029/97jb01696
Bahr DB, Pfeffer WT, Kaser G, 2015. A review of volume-area scaling of glaciers. Reviews of Geophysics, 53(1): 95-140. DOI: 10.1002/2014rg000470.
doi: 10.1002/2014rg000470
Beamer JP, Hill DF, Mcgrath D, et al., 2017. Hydrologic impacts of changes in climate and glacier extent in the Gulf of Alaska watershed. Water Resources Research, 53(9): 7502-7520. DOI: 10.1002/2016wr020033.
doi: 10.1002/2016wr020033
Bolch T, Menounos B, Wheate R, 2010. Landsat-based inventory of glaciers in western Canada, 1985-2005. Remote Sensing of Environment, 114(1): 127-137. DOI: 10.1016j.rse.2009.08.015.
doi: 10.1016j.rse.2009.08.015
Brinkerhoff DJ, Aschwanden A, Truffer M, 2016. Bayesian inference of subglacial topography using mass conservation. Frontiers in Earth Science, 4(8): 1-15. DOI: 10.3389/feart. 2016.00008.
doi: 10.3389/feart. 2016.00008
Budd WF, Allison IF, 1975. An empirical scheme for estimating the dynamics of unmeasured glaciers. Proceedings of the Moscow Symposium "Snow and Ice", pp. 246-256.
Chen J, Ohmura A, 1990. Estimation of Alpine glacier water resources and their change since the 1870s. Hydrology in Mountainous Regions I - Uydrological Measurements; the Water Cycle. Proceedings of two Lausanne Symposia, August, 1990. IAHS Publication, 193: 127-135.
Clarke GK, Berthier E, Schoof CG, et al., 2009. Neural networks applied to estimating subglacial topography and glacier volume. Journal of Climate, 22(8): 2146-2160. DOI: 10.1175/2008JCLI2572.1.
doi: 10.1175/2008JCLI2572.1
Clarke GK, Anslow FS, Jarosch AH, et al., 2013. Ice volume and subglacial topography for western Canadian glaciers from mass balance fields, thinning rates, and a bed stress model. Journal of Climate, 26(12): 4282-4303. DOI: 10. 1175/JCLI-D-12-00513.1.
doi: 10. 1175/JCLI-D-12-00513.1
Das PK, 2015. Global warming, glacial lakes and cloud burst events in Garhwal-Kumaon Himalaya: a hypothetical analysis. International Journal of Environmental Sciences, 5(4): 697-708. DOI: 10.6088/ijes.2014050100065.
doi: 10.6088/ijes.2014050100065
Farinotti D, Huss M, Bauder A, et al., 2009a. An estimate of the glacier ice volume in the Swiss Alps. Global and Planetary Change, 68(3): 225-231. DOI: 10.1016/j.gloplacha. 2009.05.004.
doi: 10.1016/j.gloplacha. 2009.05.004
Farinotti D, Huss M, Bauder A, et al., 2009b. A method to estimate the ice volume and ice-thickness distribution of alpine glaciers. Journal of Glaciology, 55(191): 422-430. DOI: 10.3189/002214309788816759.
doi: 10.3189/002214309788816759
Farinotti D, Corr H, Gudmundsson GH, 2013. The ice thickness distribution of Flask Glacier, Antarctic Peninsula, determined by combining radio-echo soundings, surface velocity data and flow modelling. Annals of Glaciology, 54(63): 18-24. DOI: 10.3189/2013aog63a603.
doi: 10.3189/2013aog63a603
Farinotti D, Brinkerhoff DJ, Clarke GKC, et al., 2017. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. The Cryosphere, 11(2): 949-970. DOI: 10.5194/tc-11-949-2017.
doi: 10.5194/tc-11-949-2017
Farinotti D, Huss M, Fürst JJ, et al., 2019. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience, 12(3): 168-173. DOI: 10.1038/ s41561-019-0300-3.
doi: 10.1038/ s41561-019-0300-3
Fastook JL, Brecher HH, Hughes TJ, 1995. Derived bedrock elevations, strain rates and stresses from measured surface elevations and velocities: Jakobshavns Isbræ, Greenland. Journal of Glaciology, 41(137): 161-173. DOI: 10.3189/s0022143000017858.
doi: 10.3189/s0022143000017858
Frey H, Machguth H, Huss M, et al., 2014. Estimating the volume of glaciers in the Himalayan-Karakoram region using different methods. The Cryosphere, 8(6): 2313-2333. DOI: 10.5194/tc-8-2313-2014.
doi: 10.5194/tc-8-2313-2014
Gantayat P, Kulkarni AV, Srinivasan J, 2014. Estimation of ice thickness using surface velocities and slope: case study at Gangotri Glacier, India. Journal of Glaciology, 60(220): 277-282. DOI: 10.3189/2014jog13j078.
doi: 10.3189/2014jog13j078
Glen JW, 1955. The creep of polycrystalline ice. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 228(1175): 519-538.
Grinsted A, 2013. An estimate of global glacier volume. The Cryosphere, 7(1): 141. DOI: 10.5194/tc-7-141-2013.
doi: 10.5194/tc-7-141-2013
Gudmundsson GH, 1999. A three-dimensional numerical model of the confluence area of Unteraargletscher, Bernese Alps, Switzerland. Journal of Glaciology, 45(150): 219-230. DOI: 10.3189/s0022143000001726.
doi: 10.3189/s0022143000001726
Gudmundsson GH, Thorsteinsson T, Raymond C, 2001. Inferring bed topography and stickiness from surface data on ice streams. AGU Fall Meeting Abstracts.
Guo WQ, Liu SY, Wei JF, et al., 2013. The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing. Annals of Glaciology, 54(63): 299-310. DOI: 10.3189/2013aog63a495.
doi: 10.3189/2013aog63a495
Guo WQ, Liu SY, Xu JL, et al., 2015. The second Chinese glacier inventory: data, methods and results. Journal of Glaciology, 61(226): 357-372. DOI: 10.3189/2015jog14j209.
doi: 10.3189/2015jog14j209
Haeberli W, Hölzle M, 1995. Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps. Annals of Glaciology, 21: 206-212. DOI: 10.1017/s0260305500015834.
doi: 10.1017/s0260305500015834
Haeberli W, Zemp M, Kääb A, et al., 2008. Fluctuations of glaciers 2000-2005. Fluctuations of Glaciers, 9: 1-266.
Haq MA, Jain K, Menon K, 2014. Modelling of Gangotri glacier thickness and volume using an artificial neural network. International Journal of Remote Sensing, 35(16): 6035-6042. DOI: 10.1080/01431161.2014.943322.
doi: 10.1080/01431161.2014.943322
Hubbard A, Blatter H, Nienow P, et al., 1998. Comparison of a three-dimensional model for glacier flow with field data from Haut Glacier d'Arolla, Switzerland. Journal of Glaciology, 44(147): 368-378. DOI: 10.1017/s0022143000002690.
doi: 10.1017/s0022143000002690
Huggel C, Kääb A, Haeberli W, et al., 2003. Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Natural Hazards and Earth System Sciences, 3: 647-662. DOI: 10.5194/nhess-3-647-2003.
doi: 10.5194/nhess-3-647-2003
Huss M, Sugiyama S, Bauder A, et al., 2007. Retreat scenarios of Unteraargletscher, Switzerland, using a combined ice-flow mass-balance model. Arctic, Antarctic, and Alpine Research, 39(3): 422-431. DOI: 10.1657/1523-0430(06-036);2.
doi: 10.1657/1523-0430(06-036);2
Huss M, Farinotti D, 2012. Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical Research: Earth Surface, 117: F04010. DOI: 10.1029/2012jf002523.
doi: 10.1029/2012jf002523
Huss M, Farinotti D, 2014. A high-resolution bedrock map for the Antarctic Peninsula. The Cryosphere, 8(4): 1261-1273. DOI: 10.5194/tc-8-1261-2014.
doi: 10.5194/tc-8-1261-2014
Immerzeel WW, Van Beek LPH, Bierkens MFP, 2010. Climate change will affect the Asian water towers. Science, 328(5984): 1382-1385. DOI: 10.1126/science.1183188.
doi: 10.1126/science.1183188
Immerzeel WW, Bierkens MFP, 2012. Asia's water balance. Nature Geoscience, 5(12): 841-842. DOI: 10.1038/ngeo1643.
doi: 10.1038/ngeo1643
James WH, Carrivick JL, 2016. Automated modelling of spatially-distributed glacier ice thickness and volume. Computers & Geosciences, 92: 90-103. DOI: 10.1016/j.cageo. 2016.04.007.
doi: 10.1016/j.cageo. 2016.04.007
Khasanov K, 2020. Evaluation of ASTER DEM and SRTM DEM data for determining the area and volume of the water reservoir. IOP Conference Series: Materials Science and Engineering, pp. 012063.
Langhammer L, Grab M, Bauder A, et al., 2019. Glacier thickness estimations of alpine glaciers using data and modeling constraints. Cryosphere, 13(8): 2189-2202. DOI: 10.5194/tc-13-2189-2019.
doi: 10.5194/tc-13-2189-2019
Lemke P, Ren J, Alley RB, et al., 2007. Observations: Changes in Snow, Ice and Frozen Ground. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, pp. 339-383. DOI: US20070163584 A1.
doi: US20070163584 A1
Li HL, Ng F, Li ZQ, et al., 2012. An extended "perfect—plasticity" method for estimating ice thickness along the flow line of mountain glaciers. Journal of Geophysical Research: Earth Surface, 117(F01020): 1-11. DOI: 10.1029/2011jf002104.
doi: 10.1029/2011jf002104
Linsbauer A, Paul F, Haeberli W, 2012. Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach. Journal of Geophysical Research: Earth Surface, 117: F03007. DOI: 10.1029/2011jf002313.
doi: 10.1029/2011jf002313
Liu Q, Mayer C, Wang X, et al., 2020. Interannual flow dynamics driven by frontal retreat of a lake-terminating glacier in the Chinese Central Himalaya. Earth and Planetary Science Letters, 546: 116450. DOI: 10.1016/j.epsl.2020.116450.
doi: 10.1016/j.epsl.2020.116450
Lüthi MP, 2009. Transient response of idealized glaciers to climate variations. Journal of Glaciology, 55(193): 918-930. DOI: 10.3189/002214309790152519.
doi: 10.3189/002214309790152519
Mayer C, Schaffer J, Hattermann T, et al., 2018. Large ice loss variability at Nioghalvfjerdsfjorden Glacier, Northeast-Greenland. Nature Communications, 9(1): 1-11. DOI: 10. 1038/s41467-018-05180-x.
doi: 10. 1038/s41467-018-05180-x
McNabb R, Hock R, O'Neel S, et al., 2012. Using surface velocities to calculate ice thickness and bed topography: a case study at Columbia Glacier, Alaska, USA. Journal of Glaciology, 58(212): 1151-1164. DOI: 10.3189/2012jog11j249.
doi: 10.3189/2012jog11j249
Michel L, Picasso M, Farinotti D, et al., 2013. Estimating the ice thickness of mountain glaciers with an inverse approach using surface topography and mass-balance. Inverse Problems, 29(3): 035002. DOI: 10.1088/0266-5611/29/3/035002.
doi: 10.1088/0266-5611/29/3/035002
Michel L, Picasso M, Farinotti D, et al., 2014. Estimating the ice thickness of shallow glaciers from surface topography and mass-balance data with a shape optimization algorithm. Computers & Geosciences, 66: 182-199. DOI: 10. 1016/j.cageo.2014.01.012.
doi: 10. 1016/j.cageo.2014.01.012
Morlighem M, Rignot E, Seroussi H, et al., 2011. A mass conservation approach for mapping glacier ice thickness. Geophysical Research Letters, 38: L19503. DOI: 10.1029/2011gl048659.
doi: 10.1029/2011gl048659
Mosbeux C, Gillet-Chaulet F, Gagliardini O, 2016. Comparison of adjoint and nudging methods to initialise ice sheet model basal conditions. Geoscientific Model Development, 9(7): 2549-2562. DOI: 10.5194/gmd-9-2549-2016.
doi: 10.5194/gmd-9-2549-2016
Nye JF, 1952. The mechanics of glacier flow. Journal of Glaciology, 2(12): 82-93. DOI: 10.1017/s0022143000033967.
doi: 10.1017/s0022143000033967
Pandit A, Ramsankaran R, 2020. Modeling ice thickness distribution and storage volume of glaciers in Chandra Basin, western Himalayas. Journal of Mountain Science, 17(8): 2011-2022. DOI: 10.1007/s11629-019-5718-y.
doi: 10.1007/s11629-019-5718-y
Parry ML, Canziani OF, Palutikof JP, et al., 2007. IPCC, 2007: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to The Fourth Assessment Report of The Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. DOI: 10.2134/jeq2008.0015br.
doi: 10.2134/jeq2008.0015br
Paterson WSB, Cuffey K, 1994. The Physics of Glaciers. New York: Pergamon Press.
Pieczonka T, Bolch T, Kröhnert M, et al., 2018. Glacier branch lines and glacier ice thickness estimation for debris-covered glaciers in the Central Tien Shan. Journal of Glaciology, 64(247): 835-849. DOI: 10.1017/jog.2018.75.
doi: 10.1017/jog.2018.75
Portner HO, Roberts DC, Masson-Delmotte V, et al., 2019. IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. November 8, 2019. , 2020
Pralong MR, Gudmundsson GH, 2011. Bayesian estimation of basal conditions on Rutford Ice Stream, West Antarctica, from surface data. Journal of Glaciology, 57(202): 315-324. DOI: 10.3189/002214311796406004.
doi: 10.3189/002214311796406004
Pritchard HD, King EC, Goodger DJ, et al., 2020. Towards Bedmap Himalayas: development of an airborne ice-sounding radar for glacier thickness surveys in High-Mountain Asia. Annals of Glaciology, 61(81): 35-45. DOI: 10.1017/aog.2020.29.
doi: 10.1017/aog.2020.29
Rabatel A, Sanchez O, Vincent C, et al., 2018. Estimation of glacier thickness from surface mass balance and ice flow velocities: a case study on Argentière Glacier, France. Frontiers in Earth Science, 6(112): 1-16. DOI: 10.3389/feart. 2018.00112.
doi: 10.3389/feart. 2018.00112
Radić V, Hock R, 2011. Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geoscience, 4(2): 91-94. DOI: 10.1038/ngeo1052.
doi: 10.1038/ngeo1052
Rasmussen LA, 1988. Bed topography and mass-balance distribution of Columbia Glacier, Alaska, USA, determined from sequential aerial photography. Journal of Glaciology, 34(117): 208-216. DOI: 10.1017/s0022143000032251.
doi: 10.1017/s0022143000032251
Rastner P, Paul F, 2020. Which DEM to use for glacier inventory applications? The example of Svalbard. EGU General Assembly2020, pp. 11059.
Ren JW, Qin DH, Kang SC, et al., 2004. Glacier variations and climate warming and drying in the central Himalayas. Chinese Science Bulletin, 49(1): 65-69. DOI: 10.1007/bf02901744.
doi: 10.1007/bf02901744
Rutishauser A, Maurer H, Bauder A, 2016. Helicopter-borne ground-penetrating radar investigations on temperate alpine glaciers: A comparison of different systems and their abilities for bedrock mapping. Helicopter GPR on temperate glaciers. Geophysics, 81(1): 119-129. DOI: 10.1190/geo2015-0144.1.
doi: 10.1190/geo2015-0144.1
Shangguan DH, Liu SY, Ding YJ, et al., 2010. Changes in the elevation and extent of two glaciers along the Yanglonghe river, Qilian Shan, China. Journal of Glaciology, 56(196): 309-317. DOI: 10.3189/002214310791968566.
doi: 10.3189/002214310791968566
Sun B, Zhang P, Jiao KQ, et al., 2003. Determination of ice thickness, subice topography and ice volume at Glacier No. 1 in Tien Shan, China by ground penetrating radar. Advances in Polar Science, 14(2): 90-98. (in Chinese)
Thorsteinsson T, Raymond CF, Gudmundsson GH, et al., 2003. Bed topography and lubrication inferred from surface measurements on fast-flowing ice streams. Journal of Glaciology, 49(167): 481-490. DOI: 10.3189/172756503781830502.
doi: 10.3189/172756503781830502
Van Pelt W, Oerlemans J, Reijmer C, et al., 2013. An iterative inverse method to estimate basal topography and initialize ice flow models. The Cryosphere, 7(3): 987-1006. DOI: 10.5194/tc-7-987-2013.
doi: 10.5194/tc-7-987-2013
Van Tiel M, Kohn I, Van Loon AF, et al., 2020. The compensating effect of glaciers: Characterizing the relation between interannual streamflow variability and glacier cover. Hydrological Processes, 34(3): 553-568. DOI: 10.1002/hyp.13603.
doi: 10.1002/hyp.13603
Wang X, Liu SY, Guo WQ, et al., 2008. Assessment and simulation of glacier lake outburst floods for Longbasaba and Pida Lakes, China. Mountain Research and Development, 28(3): 310-317. DOI: 10.1659/mrd.0894.
doi: 10.1659/mrd.0894
Wang X, Ding YJ, Liu SY, et al., 2013. Changes of glacial lakes and implications in Tian Shan, central Asia, based on remote sensing data from 1990 to 2010. Environmental Research Letters, 8(4): 044052. DOI: 10.1088/1748-9326/8/4/044052.
doi: 10.1088/1748-9326/8/4/044052
Wang X, Yang CD, Zhang YL, et al., 2018. Monitoring and simulation of hydrothermal conditions indicating the deteriorating stability of a perennially frozen moraine dam in the Himalayas. Journal of Glaciology, 64(245): 407-416. DOI: 10.1017/jog.2018.38.
doi: 10.1017/jog.2018.38
Wei JF, Liu SY, Xu JL, et al., 2015. Mass loss from glaciers in the Chinese Altai Mountains between 1959 and 2008 revealed based on historical maps, SRTM, and ASTER images. Journal of Mountain Science, 12(2): 330-343. DOI: 10.1007/s11629-014-3175-1.
doi: 10.1007/s11629-014-3175-1
Welty E, Zemp M, Navarro F, et al., 2020. Worldwide version-controlled database of glacier thickness observations. Earth System Science Data Discussions, 1-27. DOI: 10.5194/essd-2020-87.
doi: 10.5194/essd-2020-87
Wu KP, Liu SY, Jiang ZL, et al., 2018. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories. The Cryosphere, 12(1): 103-121. DOI: 10.5194/tc-12-103-2018.
doi: 10.5194/tc-12-103-2018
Wu KP, Liu SY, Zhu Y, et al., 2020. Dynamics of glacier surface velocity and ice thickness for maritime glaciers in the southeastern Tibetan Plateau. Journal of Hydrology, 125527: 1-9. DOI: 10.1016/j.jhydrol.2020.125527.
doi: 10.1016/j.jhydrol.2020.125527
Yang XC, Zhang YL, Zhang W, et al., 2006. Climate change in Mt. Qomolangma region in China during the last 34 years. Acta Geographica Sinica-Chinese, 61(7): 687-696. DOI: 10.1016/S1003-6326(06)60040-X.
doi: 10.1016/S1003-6326(06)60040-X
Yao XJ, Liu SY, Wei JF, 2010. Reservoir capacity calculation and variation of moraine-dammed lakes in the north Himalayas: A case study of Longbasaba Lake. Acta Geographica Sinica, 65: 1381-1390. DOI: 10.3189/2012JoG11J048. (in Chinese)
doi: 10.3189/2012JoG11J048.
Yao XJ, Liu SY, Sun MP, et al., 2012. Volume calculation and analysis of the changes in moraine-dammed lakes in the north Himalaya: a case study of Longbasaba lake. Journal of Glaciology, 58(210): 753-760. DOI: 10.3189/2012jog11j048.
doi: 10.3189/2012jog11j048
Yao XJ, Liu SY, Zhu Y, et al., 2015. Design and implementation of an automatic method for deriving glacier centerlines based on GIS. Journal of Glaciology & Geocryology, 37(6): 1563-1570. DOI: 10.7522/j.issn.1000-0240.2015. 0173. (in Chinese)
doi: 10.7522/j.issn.1000-0240.2015. 0173.
Zamora R, Uribe J, Oberreuter J, et al., 2017. Ice thickness surveys of the Southern Patagonian Ice Field using a low frequency ice penetrating radar system. 2017 First IEEE International Symposium of Geoscience and Remote Sensing (GRSS-CHILE). IEEE, pp. 1-4.
Zhang JT, He XJ, Shangguan DH, et al., 2012. Impact of intensive glacier ablation on arid regions of northwest China and its countermeasure. Journal of Glaciology and Geocryology, 34(4): 848-854. DOI: 10.1007/s11783-011-0280-z.
doi: 10.1007/s11783-011-0280-z
Zhang Z, Liu SY, Wei JF, et al., 2016. Mass change of glaciers in Muztag Ata-Kongur Tagh, Eastern Pamir, China from 1971/76 to 2013/14 as derived from remote sensing data. PloS One, 11(1): e0147327. DOI: 10.1371/journal.pone. 0147327.
doi: 10.1371/journal.pone. 0147327
Zhao XR, Wang X, Wei JF, et al., 2020. Spatiotemporal variability of glacier changes and their controlling factors in the Kanchenjunga region, Himalaya, based on multi-source remote sensing data from 1975 to 2015. Science of the Total Environment, 745: 140995. DOI: 10.1016/j.scitotenv. 2020.140995.
doi: 10.1016/j.scitotenv. 2020.140995
No related articles found!
Full text



[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] Yong Chen, Tao Wang, LiHua Zhou, Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .