Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (6): 461-476.doi: 10.3724/SP.J.1226.2020.00461

Previous Articles     Next Articles

Zhangmu and Gyirong ports under the threat of glacial lake outburst flood

MiaoMiao Qi1,2,ShiYin Liu1,2,3(),YongPeng Gao1,2   

  1. 1.Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, Yunnan 650091, China
    2.Institute of International Rivers and Eco-security, Yunnan University, Kunming, Yunnan 650091, China
    3.State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2020-09-04 Accepted:2020-12-01 Online:2020-12-31 Published:2021-01-14
  • Contact: ShiYin Liu E-mail:shiyin.liu@ynu.edu.cn
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition and Research Program(Grant 2019QZKK0208);the Innovation Fund Designated to Graduate Students of Yunnan University(2020Z47);the National Natural Science Foundation of China(41761144075);the Research Seed Fund for Talents of Yunnan University(YJRC3201702)

Abstract:

The Himalayas are prone to glacial lake outburst floods, which can pose a severe threat to downstream villages and infrastructure. The Zhangmu and Gyirong land treaty ports are located on the China-Nepal border in the central Himalayas. In recent years, the expansion of glacial lakes has increased the threat of these two port regions. This article describes the results of mapping the glacial lakes larger than 0.01 km2 in the Zhangmu and Gyirong port regions and analyzes their change. It provides a comprehensive assessment of potentially dangerous glacial lakes and predicts the development of future glacial lakes. From 1988 to 2019, the glacial lakes in these port regions underwent "expansion", and moraine-dammed lakes show the most significant expansion trend. A total of eleven potentially dangerous glacial lakes are identified based on the assessment criteria and historical outburst events; most expanded by more than 150% from 1988 to 2019, with some by over 500%. The Cirenmaco, a moraine-dammed lake, is extremely prone to overtopping due to ice avalanches or the melting of dead ice in the dam. For other large lakes, such as the Jialongco, Gangxico and Galongco, ice avalanches may likely cause the lakes to burst besides self-destructive failure. The potential dangers of the Youmojianco glacial lakes, including lakes Nos. 9, 10 and 11, will increase in the future. In addition, the glacier-bed topography model predicts that 113 glacial lakes with a size larger than 0.01 km2, a total area of 11.88 km2 and a total volume of 6.37×109 m3 will form in the study area by the end of the 21 century. Due to global warming, the glacial lakes in the Zhangmu and Gyirong port regions will continue to grow in the short term, and hence the risk of glacial lake outburst floods will increase.

Key words: Zhangmu and Gyirong ports, glacier lake expansion, potentially dangerous glacial lakes, future lake development

Table 1

Historical GLOF events in the ZPR and GPR"

Name

Date

(Month/Day/Year)

Location

(Long., Lat.)

Altitude

(m a.s.l.)

Burst water (×106 m3)DamageTriggerReference
Taraco8/28/1935

86.13°E

28.29°N

5,2456.3Inundated farmlandDam collapse by seepageChen et al. (2007)
Cirenmaco

1964

7/11/1981

86.07°E

28.21°N

4,655N/A200 death, destroyed a bridge and a hydropower station

Piping

Ice avalanche

Xu et al. (1989)
Jialongco

5/23/2002

6/29/2002

85.85°E

28.21°N

4,37423.6Destroyed a hydropower station and highwayIce avalancheChen et al. (2006)
Gongbatongsha Tsho7/5/2016

86.06°E

28.08°N

4,608N/ADamaged the Bhotekoshi hydropower station and China-Nepal highwayContinual rainstormChina Science Daily
Longda Tsho8/25/1964

85.35°E

28.62°N

5,46010.8Destroyed downstream roads and villagesIce avalancheNie et al. (2018)
Zanaco6/7/1995

85.37°E

28.66°N

4,745N/AIce slides

Figure 1

Map of the Zhangmu and Gyirong Port Region"

Table 2

Landsat images used to map glacial lakes"

No.Path/RowSatellite/sensor

Date

(Month/Day/Year)

No.Path/RowSatellite/sensor

Date

(Month/Day/Year)

1141/40Landsat 5/TM11/29/198815141/40Landsat 5/TM11/20/2008
2141/41Landsat 5/TM11/12/198816141/41Landsat 5/TM11/20/2008
3141/40Landsat 5/TM10/13/199417141/40Landsat 5/TM01/23/2009
4141/41Landsat 5/TM12/16/199418141/41Landsat 5/TM12/09/2009
5141/40Landsat 5/TM12/15/199619141/40Landsat 5/TM10/28/2011
6141/41Landsat 5/TM12/21/199620141/41Landsat 5/TM02/14/2011
7141/40Landsat 5/TM12/30/199921141/40Landsat 8/OLI12/04/2013
8141/41Landsat 5/TM11/25/199822141/41Landsat 8/OLI12/04/2013
9141/40Landsat 5/TM10/13/200023141/40Landsat 8/OLI12/10/2015
10141/41Landsat 5/TM10/3/200024141/41Landsat 8/OLI10/07/2015
11141/40Landsat 5/TM11/19/200425141/40Landsat 8/OLI12/31/2017
12141/41Landsat 5/TM12/11/200426141/41Landsat 8/OLI11/13/2017
13141/40Landsat 5/TM01/31/200627141/40Landsat 8/OLI11/19/2019
14141/41Landsat 5/TM12/01/200628141/41Landsat 8/OLI11/19/2019

Table 3

The criteria for the identification of PDGLs"

Evaluation objectEvaluation indicatorCritical valueReferences
Moraine/ice-dammed lakeArea>0.1 km2Wang et al. (2012)
Area expansion>20% increaseICIMOD (2011)
Moraine damSlope angle of dam downstream surface>20°Wang et al. (2011)
Mother glacierArea>2 km2et al. (1999)
Slope angle of the glacier tongue>10°Rounce et al. (2017)
Distance between the lake and the mother glacierDistance from the mother glacier (m)<500et al. (1999)

Table 4

Numbers and areas of glacial lakes in the ZPR and GPR between 1988 and 2018"

YearTypeZPRGPRTotalAverage altitude (m a.s.l.)
Number/Area (km2)Number/Area (km2)Number/Area (km2)
1988S01/(0.02±0.01)1/(0.02±0.01)4,494
M12/(6.88±0.38)11/(0.78±0.13)23/(7.67±0.51)4,985
U19/(4.47±0.36)23/(1.31±0.22)42/(5.78±0.58)5,177
1998S6/(0.12±0.04)4/(0.08±0.02)10/(0.20±0.06)4,938
M16/(8.81±0.47)16/(1.14±0.19)32/(9.95±0.65)5,008
U36/(4.72±0.47)40/(1.69±0.32)76/(6.42±0.79)5,121
2008S2/(0.08±0.02)2/(0.02±0.01)4/(0.10±0.03)4,779
M15/(11.59±0.53)23/(1.83±0.29)38/(13.42±0.81)5,010
U30/(4.67±0.44)38/(1.98±0.33)68/(6.64±0.77)5,108
2019S3/(0.25±0.05)2/(0.04±0.01)5/(0.29±0.06)4,827
M23/(13.81±0.67)42/(3.83±0.55)65/(17.64±1.21)5,072
U49/(5.32±0.60)61/(2.98±0.55)110/(8.31±1.16)5,101
1988-2019+70/(+4.74)+44/(+8.03)+114/(+12.78)/

Figure 2

Distribution of glacial lakes in different altitude zones and size classes of the ZPR and GPR in 2019 (Note: S, M, and U represent supraglacial lakes, moraine-dammed lakes, and glacier-fed unconnected lakes, respectively, and this applies to other figures hereafter)"

Figure 3

Variation of the number and area of glacial lakes in the ZPR and GPR from 1988 to 2019"

Figure 4

Change of continuously present lakes from 1988 to 2019 (a) and altitudinal distribution of newly formed lakes in 2019 (b)"

Figure 5

Variation of the number and area of moraine-dammed lakes (a) and glacier-fed unconnected lake (b) of different size classes from 1988 to 2019"

Figure 6

Variation of the number and area of moraine-dammed lakes (M), glacier-fed unconnected lake (U) and supraglacial lakes (S) in different altitude zones from 1988 to 2019"

Figure 7

Spatial distribution of potentially dangerous glacial lakes. (a) Location of PDGLs in the ZPR and GPR. (b) Volume change of PDGLs between 1988 and 2019 (Note: the volume of Gangxico and Galongco is reduced by ten times in (b) to fit in the graph)"

Table 5

Information and statistics of the PDGLs in the ZPR and GPR"

No.NameLocationAltitude (m a.s.l.)Area (km2) and change
Long.Lat.19882019Change
1Qiezalaco86.26°E28.37°N5,0670.11±0.010.32±0.03191%
2Youmojianco86.23°E28.35°N5,3480.25±0.020.58±0.05132%
3Cirenmaco86.07°E28.07°N4,6550.10±0.020.31±0.03210%
4Gangxico85.87°E28.36°N5,2122.61±0.084.59±0.1276%
5Galongco85.84°E28.32°N5,0672.10±0.095.36±0.16155%
6Jialongco85.85°E28.21°N4,3760.11±0.020.61±0.04454%
7Unnamed85.56°E28.43°N4,872No lake0.28±0.03/
8Unnamed85.56°E28.22°N3,989No lake0.10±0.01/
9Unnamed85.46°E28.57°N4,4970.02±0.010.24±0.031,100%
10Unnamed85.50°E28.51°N4,7570.05±0.010.32±0.03540%
11Unnamed85.90°E28.15°N4,495No lake0.23±0.03/

Figure 8

Variation of the area and peak discharge of the PDGLs in the ZPR and GPR from 1988 to 2019"

Figure 9

Modeled predicted future glacial lakes. (a) Distribution of the predicted 16 future glacial lakes in the ZPR and GPR. (b) Distribution of the ice thickness from Farinotti et al. (2019). (c) and (d) The two largest lakes in the basin. Yellow rectangles in Figure (a) show the position of the two largest lakes"

Table 6

Statistics for the large glacial lakes (≥0.2 km2) in the ZPR and GPR predicted by glacier-bed topography model."

No.LocationArea (km2)Depth (m)

Volume

(×108 m3)

Possible peak discharge (m3/s)
Long.Lat.MinMeanMax
185.71 °E28.25 °N1.37±0.100.0040.89113.2110.8441,336
285.88 °E28.40 °N1.24±0.091.7532.4065.465.9927,946
386.23 °E28.33 °N0.64±0.050.0033.6367.075.0224,870
485.77 °E28.26 °N0.63±0.050.0022.2851.744.9824,739
585.54 °E28.49 °N0.60±0.080.0025.7458.291.5611,499
685.83 °E28.33 °N0.52±0.042.9840.8286.393.3719,118
785.65 °E28.40 °N0.48±0.040.6931.3480.911.9613,369
885.75 °E28.32 °N0.42±0.030.0017.4742.412.8116,957
985.58 °E28.28 °N0.36±0.040.3139.8380.992.2414,601
1085.55 °E28.41 °N0.35±0.040.0049.8591.351.209,671
1185.79 °E28.16 °N0.28±0.030.7621.2747.982.7416,677
1285.31 °E28.50 °N0.22±0.022.6312.2022.540.525,569
1385.62 °E28.37 °N0.22±0.033.4838.8567.010.817,461
1485.79 °E28.30 °N0.21±0.020.0023.6841.221.5211,304
1585.91 °E28.15 °N0.21±0.038.1733.5351.181.8212,731
1685.50 °E28.51 °N0.21±0.026.8139.8963.560.475,210
Allen SK, Linsbauer A, Randhawa SS, et al., 2016. Glacial lake outburst flood risk in Himachal Pradesh, India: an integrative and anticipatory approach considering current and future threats. Natural Hazards, 84(3): 1741-1763. DOI: 10.1007/s11069-016-2511-x.
doi: 10.1007/s11069-016-2511-x
Allen SK, Zhang G, Wang W, et al., 2019. Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach. Science Bulletin, 064(007): 435-445. DOI: 10.1016/j.scib.2019.03.011.
doi: 10.1016/j.scib.2019.03.011
Bolch T, Buchroithner MF, Pieczonka T, et al., 2008. Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. Journal of Glaciology, 54(187): 592-600. DOI: 10.3189/002214308786570782.
doi: 10.3189/002214308786570782
Cao XH, Liu ZZ, Li WS, 2016. Glacial lake mapping and analysis of the potentially dangerous glacial lakes before Nepal4.25 Earthquake in 2015. Journal of Glaciology and Geocryology, 38(3): 573-583. DOI: 10.7522 /j. issn. 1000-0240. 2016. 0064.
doi: 10.7522 /j. issn. 1000-0240. 2016. 0064
Carey M, 2005. Living and dying with glaciers: people's historical vulnerability to avalanches and outburst floods in Peru. Global and planetary change, 47(2/4): 122-134. DOI: 10. 1016/j.gloplacha.2004.10.007.
doi: 10. 1016/j.gloplacha.2004.10.007
Carrivick JL, 2010. Dam break-Outburst flood propagation and transient hydraulics: A geosciences perspective. Journal of Hydrology, 380 (3c4): 338-355. DOI: 10.1016/j.jhydrol.2009.11.009.
doi: 10.1016/j.jhydrol.2009.11.009
Carrivick JL, Tweed FS, 2016. A global assessment of the societal impacts of glacier outburst floods. Global and Planetary Change, 144: 1-16. DOI: 10.1016/j.gloplacha.2016. 07.001.
doi: 10.1016/j.gloplacha.2016. 07.001
Chen ZL, Zhu PY, Gong YW. 2003. Typical debris flow triggered by ice-lake break. Journal of Mountain Science, 21(6): 716-720. DOI: CNKI:SUN:SDYA.0.2003-06-013.
doi: CNKI:SUN:SDYA.0.2003-06-013
Chen X, Cui P, Yang Z, et al., 2006. Debris flow of Chongdui Gully in Nyalam county, 2002: cause and control. Journal of Glaciology and Geocryology, 28(5): 776-781. DOI: 10. 1016/S1001-8042(06)60011-0.
doi: 10. 1016/S1001-8042(06)60011-0
Chen X, Cui P, Li Y, et al., 2007. Changes in glacial lakes and glaciers of post-1986 in the Poiqu River basin, Nyalam, Xizang (Tibet). Geomorphology, 88(3-4): 298-311. DOI: 10. 1016/j.geomorph.2006.11.012.
doi: 10. 1016/j.geomorph.2006.11.012
Clague JJ, Evans SG, 1994. Formation and failure of natural dams in the Canadian Cordillera. Geological Survey of Canada, Bulletin, 464. DOI: 10.4095/194028.
doi: 10.4095/194028
Clague JJ, Evans SG, 2000. A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quaternary Science Reviews, 19(17-18): 0-1783. DOI: 10.1016/s0277-3791(00)00090-1.
doi: 10.1016/s0277-3791(00)00090-1
Cook KL, Andermann C, Gimbert F, et al., 2018. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science, 362(6410): 53-57. DOI: 10.1126/science.aat4981.
doi: 10.1126/science.aat4981
Cogley JG, 2016. Glacier shrinkage across High Mountain Asia. Annals of Glaciology, 57(71): 41-49. DOI: 10.3189/2016AoG71A040.
doi: 10.3189/2016AoG71A040
Dubey S, Goyal MK, 2020. Glacial Lake Outburst Flood (GLOF) Hazard, Downstream Impact, and Risk over the Indian Himalayas. Water Resources Research, e2019WR026533. DOI: 10.1029/2019wr026533.
doi: 10.1029/2019wr026533
Farinotti D, Huss JJ M, Fuerst J, 2019. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience, 12(3): 168-173. DOI: 10.1038/s41561-019-0300-3.
doi: 10.1038/s41561-019-0300-3
Gardelle J, Arnaud Y, Berthier E, 2011. Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Global and Planetary Change, 75(1-2): 47-55. DOI: 10.1016/j.gloplacha.2010.10.003.
doi: 10.1016/j.gloplacha.2010.10.003
Haeberli, Wilfried, 1983. Frequency and characteristics of glacier floods in the Swiss Alps. Annals of Glaciology, 4: 85-90. DOI: 10.3189/s0260305500005280.
doi: 10.3189/s0260305500005280
Huggel C, Kääb A, Haeberli W, et al., 2002. Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Canadian Geotechnical Journal, 39(2): 316-330. DOI: 10.1139/t01-099.
doi: 10.1139/t01-099
Huggel C, Kääb A, Haeberli W, et al., 2003. Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Natural Hazards and Earth System Science, 3(6): 647-662. DOI: 10.5194/nhess-3-647-2003.
doi: 10.5194/nhess-3-647-2003
ICIMOD, 2011. Glacial Lakes and Glacial Lake Outburst Floods in Nepal. Kathmandu, Nepal.
Jiang S, Nie Y, Liu Q, et al., 2018. Glacier change, supraglacial debris expansion and glacial lake evolution in the Gyirong River Basin, Central Himalayas, between 1988 and 2015. Remote Sensing, 10(7): 1-18. DOI:10.3390/rs10070986.
doi: 10.3390/rs10070986
Kargel JS, Leonard GJ, Shugar DH, et al., 2016. Geomorphic and geologic controls of geohazards induced by Nepal's 2015 Gorkha earthquake. Science, 351(6269): aac8353. DOI: 10.1126/science.aac8353.
doi: 10.1126/science.aac8353
Kattelmann R, 2003. Glacial Lake Outburst Floods in the Nepal Himalaya: A Manageable Hazard? Natural Hazards, 28(1):145-154. DOI: 10.1023/a:1021130101283.
doi: 10.1023/a:1021130101283
Kääb A, Berthier E, Nuth C, et al., 2012. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412): 495-498. DOI: /10.1038/nature11324.
doi: /10.1038/nature11324
Ke L, Song C, Yong B, et al., 2020. Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale assessment in southeastern Tibetan Plateau. Remote Sensing of Environment, 242: 111777. DOI: 10. 1016/j.rse.2020.111777.
doi: 10. 1016/j.rse.2020.111777
King O, Quincey DJ, Carrivick JL, et al., 2017. Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015. Cryosphere, 11(1): 407-426. DOI: 10.5194/tc-11-407-2017.
doi: 10.5194/tc-11-407-2017
King O, Dehecq A, Quincey D, et al., 2018. Contrasting geometric and dynamic evolution of lake and land-terminating glaciers in the central Himalaya. Global and Planetary Change, 167: 46-60. DOI: 10.1016/j.gloplacha.2018.05.006.
doi: 10.1016/j.gloplacha.2018.05.006
Khanal NR, Hu JM, Mool P, 2015. Glacial lake outburst flood risk in the Poiqu/Bhote Koshi/Sun Koshi River Basin in the central Himalayas. Mountain Research and Development, 35(4): 351-364. DOI: 10.1659/mrd-journal-d-15-00009.
doi: 10.1659/mrd-journal-d-15-00009
Kraaijenbrink PD, Bierkens MF, AF Lutzet al., 2017. Impact of a global temperature rise of1.5 degrees Celsius on Asia's glaciers. Nature, 549(7671): 257-260. DOI: 10.1038/ nature23878.
doi: 10.1038/ nature23878
Li GM, 2012. Research on the typical altitudinal belts of vegetation spatial pattern recognition and the climate and environment under the framework of the digital mountain-A case study of Kuala ditch in Tibet. M.S. Thesis, Chengdu University of Technology, pp. 15-17.
Li Z, Chen NS, Zhang JS, et al., 2014. Characteristics of the disaster chain of outbursts and glacier lakes in the Poiqu River basin. Hydrogeology and Engineering Geology, 41(4): 143-148. DOI: 10.16030/j.cnki.issn.1000-3665.2014.04.020.
doi: 10.16030/j.cnki.issn.1000-3665.2014.04.020
Linsbauer A, Frey H, Haeberli W, et al., 2016. Modeling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya—Karakoram region. Annals of Glaciology, 57(71): 119-130. DOI: 10.3189/2016aog71a627.
doi: 10.3189/2016aog71a627
Liu Q, Mayer C, Wang X, et al., 2020. Interannual flow dynamics driven by frontal retreat of a lake-terminating glacier in the Chinese Central Himalaya. Earth and Planetary Science Letters, 546: 116450. DOI: 10.1016/j.epsl.2020.116450.
doi: 10.1016/j.epsl.2020.116450
Lü RR, Tang BX, Li DJ, 1999. Debris Flow and the Environment in Tibet. Chengdu: Sichuan University Press, pp. 10-20.
Marren PM, 2005. Magnitude and frequency in proglacial rivers: a geomorphological and sedimentological perspective. Earth-Science Reviews, 70 (3-4): 203-251. DOI: 10.1016/j.earscirev.2004.12.002.
doi: 10.1016/j.earscirev.2004.12.002
Maurer JM, Schaefer JM, Rupper S, et al., 2019. Acceleration of ice loss across the Himalayas over the past 40 years. Science Advances, 5(6): eaav7266. DOI: 10.1126/sciadv.aav7266.
doi: 10.1126/sciadv.aav7266
Mcfeeters SK, 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17: 1425-1432. DOI: 10.1080/01431169608948714.
doi: 10.1080/01431169608948714
Nie Y, L Q, L SY, et al., 2013. Glacial lake expansion in the central Himalayas by Landsat Images, 1990-2010. Plos One, 8(12): e83973. DOI: 10.1371/journal.pone.0083973.
doi: 10.1371/journal.pone.0083973
Nie Y, Sheng YW, Liu Q, et al., 2017. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sensing of Environment, 189: 1-13. DOI: 10.1016/j.rse.2016.11.008.
doi: 10.1016/j.rse.2016.11.008
Nie Y, Liu Q, Wang JD, et al., 2018. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis. Geomorphology, 308: 91-106. DOI: 10.1016/j.geomorph. 2018.02.002.
doi: 10.1016/j.geomorph. 2018.02.002
Patton H, Swift DA, Clark CD, et al., 2015. Automated mapping of glacial overdeepenings beneath contemporary ice sheets: approaches and potential applications. Geomorphology, 232: 209-223. DOI: 10.1016/j.geomorph.2015.01.003.
doi: 10.1016/j.geomorph.2015.01.003
Popov N. 1991. Assessment of glacial debris flow hazard in the north TienShan. Proceedings of the Soviet-China-Japan Symposium and Field Workshop on Natural Disasters, 2-17 September1991, pp. 384-391.
Rounce D, Watson CS, Mckinney D, 2017. Identification of hazard and risk for glacial lakes in the Nepal Himalaya using Satellite imagery from 2000-2015. Remote Sensing, 9(7): 1-19. DOI: 10.3390/rs9070654.
doi: 10.3390/rs9070654
Richardson SD, Reynolds JM, 2000. An overview of glacial hazards in the Himalayas. Quaternary International, 65-66(99): 31-47. DOI: 10.1016/S1040-6182(99)00035-X.
doi: 10.1016/S1040-6182(99)00035-X
Sakai A, Fujita K, 2017. Contrasting glacier responses to recent climate change in high mountain Asia. Scientific Reports, 7(1): 13717. DOI: 10.1038/s41598-017-14256-5.
doi: 10.1038/s41598-017-14256-5
Tian LD, Yao TD, White JWC, et al., 2005. High excess deuterium in the middle of the Himalayas is related to water vapor transport in the westerly zone. Chinese Science Bulletin, 50(7): 669-672. DOI: CNKI:SUN:KXTB.0.2005-07-010.
doi: CNKI:SUN:KXTB.0.2005-07-010
Wang SM, 1998. Records of Lakes in China. Beijing: Science Press, pp. 10-20.
Wang WC, Yao TD, Gao Y, et al., 2011. A first-order method to identify potentially dangerous glacial lakes in a region of the Southeastern Tibetan Plateau. Mountain Research and Development, 31(2): 122-130. DOI: 10.1659/mrd-journal-d-10-00059.1.
doi: 10.1659/mrd-journal-d-10-00059.1
Wang X, Liu SY, Guo WQ, et al., 2012. An approach for estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using remote-sensing data. Natural Hazards and Earth System Sciences, 12(10): 3109-3122. DOI: 3109-3122. 10.5194/nhess-12-3109-2012.
doi: 3109-3122. 10.5194/nhess-12-3109-2012
Wang X, Ding Y, Liu S, et al., 2013. Changes of glacial lakes and implications in the Tian Shan, central Asia, based on remote sensing data from 1990 to 2010. Environmental Research Letters, 8(4): 575-591. DOI: 10.1088/1748-9326/8/4/044052.
doi: 10.1088/1748-9326/8/4/044052
Wang WC, Yang G, Pablo IA, et al., 2015. Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo Valley, Central Himalayas. Geomorphology, 306: 292-305. DOI: 10.1016/j.geomorph.2015.08.013.
doi: 10.1016/j.geomorph.2015.08.013
Wu GJ, Yao TD, Wang WC, et al., 2019. Glacial Hazards on Tibetan Plateau and Surrounding Alpines. Bulletin of Chinese Academy of Sciences, 34(11): 1285-1292. DOI: 10.16418/j.issn.1000-3045.2019.11.011.
doi: 10.16418/j.issn.1000-3045.2019.11.011
Westoby MJ, Glasser NF, Brasington J, et al., 2014. Modeling outburst floods from moraine-dammed glacial lakes. Earth Science Reviews, 134: 137-159. DOI: 10.1016/j.earscirev. 2014.03.009.
doi: 10.1016/j.earscirev. 2014.03.009
Xu DM, 1988. Characteristics of debris flow caused by the outburst of a glacial lake in Poiqu River, Xizang, China, 1981. Geosciences Journal, 17(4): 569-580. DOI: 10.1007/bf00209443.
doi: 10.1007/bf00209443
Yao TD, Zhu LP, 2006. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy. Advances in Earth Science, 21(5): 459-464. DOI: 10.1016/S1002-0160(06)60035-0.
doi: 10.1016/S1002-0160(06)60035-0
Yao T, Thompson L, Yang W, et al., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9): 663-667. DOI: 10.1038/nclimate1580.
doi: 10.1038/nclimate1580
Yao X, Liu S, Han L, et al., 2018. Definition and classification system of glacial lake for inventory and hazards study. Journal of Geographical Sciences, 28(2): 193-205. DOI: 10. 1007/s11442-018-1469-x.
doi: 10. 1007/s11442-018-1469-x
Zhang G, Yao T, Xie H, et al., 2015. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Global and Planetary Change, 131: 148-157. DOI: 10.1016/j.gloplacha.2015.05.013.
doi: 10.1016/j.gloplacha.2015.05.013
Zhang G, Bolch T, Allen S, et al., 2019. Glacial lake evolution and glacier-lake interactions in the Poiqu River basin, central Himalaya, 1964-2017. Journal of Glaciology, 65(251): 347-365. DOI: 10.1017/jog.2019.13.
doi: 10.1017/jog.2019.13
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] Yong Chen, Tao Wang, LiHua Zhou, Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .