Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (6): 447-460.doi: 10.3724/SP.J.1226.2020.00447

Previous Articles     Next Articles

Spatial distribution of supraglacial debris thickness on glaciers of the China-Pakistan Economic Corridor and surroundings

YaJie Zheng,Yong Zhang(),Ju Gu,Xin Wang,ZongLi Jiang,JunFeng Wei   

  1. School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Huan 411201, China
  • Received:2020-09-09 Accepted:2020-12-01 Online:2020-12-31 Published:2021-01-14
  • Contact: Yong Zhang E-mail:yong.zhang@hnust.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(41761144075);the Research Funds for New Talents of Yunnan University(YJRC3201702)

Abstract:

Debris-covered glaciers, characterized by the presence of supraglacial debris mantles in their ablation zones, are widespread in the China-Pakistan Economic Corridor (CPEC) and surroundings. For these glaciers, thin debris layers accelerate the melting of underlying ice compared to that of bare ice, while thick debris layers retard ice melting, called debris-cover effect. Knowledge about the thickness and thermal properties of debris cover on CPEC glaciers is still unclear, making it difficult to assess the regional debris-cover effect. In this study, thermal resistance of the debris layer estimated from remotely sensed data reveals that about 54.0% of CPEC glaciers are debris-covered glaciers, on which the total debris-covered area is about 5,072 km2, accounting for 14.0% of the total glacier area of the study region. We find that marked difference in the extent and thickness of debris cover is apparent from region to region, as well as the debris-cover effect. 53.3% of the total debris-covered area of the study region is concentrated in Karakoram, followed by Pamir with 30.2% of the total debris-covered area. As revealed by the thermal resistance, the debris thickness is thick in Hindu Kush on average, with the mean thermal resistance of 7.0×10-2 ((m2?K)/W), followed by Karakoram, while the thickness in western Himalaya is thin with the mean value of 2.0×10-2 ((m2?K)/W). Our findings provide a basis for better assessments of changes in debris-covered glaciers and their associated hydrological impacts in the CPEC and surroundings.

Key words: debris thickness, debris-cover effect, thermal resistance, ice melting, CPEC

Figure 1

Location of the study area along with glacier distribution"

Figure 2

Acquisition time of ASTER images used in this study"

Figure 3

Spatial distribution of ASTER-derived thermal resistances of debris layers on the entire CPEC glaciers (a) and in a typical region (b), and variation in thermal resistance of the entire glaciers with altitude (c). Dash line denotes the average value of the thermal resistance of the debris layer"

Figure 4

Comparison of ASTER-derived thermal resistance of the debris layer (line-symbol) and observed debris thickness (point) on the Baltoro (a), Biafo (b) and Hinarche (c) glaciers"

Figure 5

Comparison of the area-altitude distribution of debris-covered area in our TR, M2018 and S2018 datasets (a) and area-altitude distributions of the debris-covered, ablation and glacier areas of the study region (b)"

Table1

Basic statistics of debris cover in different mountains of the study region. Glacier information is from RGI 6.0. DC indicates debris-covered, and R is the mean thermal resistance (×10-2 ((m2?K)/W))"

MountainGlacier area (km2)Glacier numberDC area (km2)DC glacier numberDebris coverageR
Karakoram21,69111,8162,7015,90812.4%3.0
Pamir12,08013,3841,5347,64912.6%2.6
Western Himalaya8981,61927087130.0%2.0
Hindu Kush2,3353,1115671,81824.0%7.2

Figure 6

Debris-covered area in different glacier area size classes (a) and comparison of the debris-covered area on glaciers >100.0 km2 (b) for TR, M2018 and S2018 datasets"

Table 2

Regional differences in thermal resistance of the debris layer"

GlacierRegionMean thermal resistance (×10-2 m2/W)Reference
Lirung GlacierLangtang Valley14.0Rana et al. (1997)
Khumbu GlacierLangtang Valley12.0Nakawo et al. (1999)
Ngozumba GlacierNepal Himalaya3.1Suzuki et al. (2007)
Hailuogou GlacierMount Gongga2.1Zhang et al. (2016)
DGB GlacierMount Gongga3.4Zhang et al. (2016)
XGB GlacierMount Gongga2.3Zhang et al. (2016)
Koxkar GlacierTianshan Mountains15.1Zhang and Liu (2017)
Hinarche GlacierCPEC2.6This study
Baltoro GlacierCPEC2.5This study
Biafo GlacierCPEC1.4This study
Barpu GlacierCPEC3.3This study

Figure 7

Observed ice melt rate versus debris thickness on different glaciers in the study region"

Alley RE, Nilsen M, 2001. Algorithm theoretical basis document for: brightness temperature Version 3.1. Jet Propulsion Laboratory, 14.
Archer DR, Fowler HJ, 2004. Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrology and Earth System Sciences, 8(1): 47-61. DOI: 10.5194/hess-8-47-2004.
doi: 10.5194/hess-8-47-2004
Ashraf M, Khan AR, 2016. Biafo Glacier Field Investigations 2015. WAPDA, Pakistan.
Ashraf M, Khan AR, 2017. Barpu Glacier Field Investigations 2014. WAPDA, Pakistan.
Braithwaite RJ, Raper S, 2009. Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53): 127-132. DOI: 10.3189/172756410790595930.
doi: 10.3189/172756410790595930
Bookhagen B, Burbank DW, 2010. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface, 115: F03019. DOI: 10.1029/2009JF001426.
doi: 10.1029/2009JF001426
Benn DI, Bolch T, Hands K, et al., 2012. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Science Reviews, 114(1-2): 156-174. DOI: 10.1016/j.earscirev.2012.03.008.
doi: 10.1016/j.earscirev.2012.03.008
Bolch T, Kulkarni A, Kääb A, et al., 2012. The state and fate of Himalayan glaciers. Science, 336(6079): 310-314. DOI: 10.1126/science.1215828.
doi: 10.1126/science.1215828
Bhambri R, Bolch T, Kawishwar P, et al., 2013. Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram. The Cryosphere, 7(5): 1385-1398. DOI: 10. 5194/tc-7-1385-2013.
doi: 10. 5194/tc-7-1385-2013
Cogley JG, Hock R, Rasmussen LA, et al., 2011. Glossary of glacier mass balance and related terms. UNESCO/IHP: Paris, France. DOI: 10.5167/uzh-53475.
doi: 10.5167/uzh-53475
Collier E, Maussion F, Nicholson LI, et al., 2015. Impact of debris cover on glacier ablation and atmosphere-glacier feedbacks in the Karakoram. The Cryosphere, 9: 1617-1632. DOI: 10.5194/tc-9-1617-2015.
doi: 10.5194/tc-9-1617-2015
Consortium RGI, 2017. Randolph Glacier Inventory-A Dataset of Global Glacier Outlines: Version 6.0: Technical Report. Global Land Ice Measurements from Space, Colorado, USA.
Fujita K, Sakai A, 2014. Modelling runoff from a Himalayan debris-covered glacier. Hydrology and Earth System Sciences, 18(7): 2679-2694. DOI: 10.5194/hess-18-2679-2014.
doi: 10.5194/hess-18-2679-2014
Gardelle J, Berthier E, Arnaud Y, 2012. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geoscience, 5(5): 322-325. DOI: 10.1038/NGEO01450.
doi: 10.1038/NGEO01450
Gibson MJ, Glasser NF, Quincey DJ, et al., 2017. Temporal variations in supraglacial debris distribution on Baltoro Glacier, Karakoram between 2001 and 2012. Geomorphology, 295: 572-585. DOI: 10.1016/j.geomorph.2017.08.012.
doi: 10.1016/j.geomorph.2017.08.012
Groos AR, Mayer C, Smiraglia C, et al., 2017. A first attempt to model region-wide glacier surface mass balances in the karakoram: findings and future challenges. Geografia Fisica e Dinamica Quaternaria, 40: 137-159. DOI: 10.4461/GFDQ2017.40.10.
doi: 10.4461/GFDQ2017.40.10
Haeberli W, Hölzle M, 1995. Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps. Annals of Glaciology, 21: 206-212.
Hewitt K, 2011. Glacier change, concentration, and elevation effects in the Karakoram Himalaya, Upper Indus Basin. Mountain Research and Development, 31(3): 188-200. DOI: 10.1659/MRD-JOURNAL-D-11-00020.1.
doi: 10.1659/MRD-JOURNAL-D-11-00020.1
Iturrizaga L, 2011. Trends in 20th century and recent glacier fluctuations in the Karakoram Mountains. Zeitschrift für Geomorphologie, 55(3): 205-231. DOI: 10.1127/0372-8854/2011/0055S3-0059.
doi: 10.1127/0372-8854/2011/0055S3-0059
Immerzeel WW, Van Beek L, Konz M, et al., 2012. Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change, 110(3-4): 721-736. DOI: 10.1007/s10584-011-0143-4.
doi: 10.1007/s10584-011-0143-4
Immerzeel WW, Lutz AF, Andrade M, et al., 2020. Importance and vulnerability of the world's water towers. Nature, 577(7790): 364-369. DOI: 10.1038/s41586-019-1822-y.
doi: 10.1038/s41586-019-1822-y
Kalnay E, Kanamitsu M, Kistler R, et al., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of American Meteorological Society, 77: 437-471.
Kraus H, 1975. An energy balance model for ablation in mountainous areas. IAHS Publication, 104: 74-82.
Kayastha RB, Takeuchi Y, Nakawo M, et al., 2000. Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal using a positive degree-day factor. IAHS Publication, 264: 71-81.
Kääb A, Berthier E, Nuth C, et al., 2012. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412): 495-498. DOI: 10.1038/nature11324.
doi: 10.1038/nature11324
Kääb A, Treichler D, Nuth C, et al., 2015. Brief Communication: Contending estimates of 2003-2008 glacier mass balance over the Pamir-Karakoram-Himalaya. The Cryosphere, 9(2): 557-564. DOI: 10.5194/tc-9-557-2015.
doi: 10.5194/tc-9-557-2015
Kirkbride MP, Deline P, 2013. The formation of supraglacial debris covers by primary dispersal from transverse englacial debris bands. Earth Surface Processes and Landforms, 38(15): 1779-1792. DOI: 10.1002/esp.3416.
doi: 10.1002/esp.3416
Kraaijenbrink P, Bierkens M, Lutz AF, et al., 2017. Impact of a global temperature rise of1.5 degrees Celsius on Asia's glaciers. Nature, 549(7671): 257-260. DOI: 10.1038/nature23878.
doi: 10.1038/nature23878
Li NJ, Cai XX, Li J, 1981. Discussion on some Hydrological features of the Batura Glacier, Karakoram. Journal of Glaciology and Geocryology, 2: 8. (in Chinese)
Liu Q, Liu SY, 2012. Progress in the study of englacial and subglacial drainage system of glaciers. Advances in Earth Science, 27(6): 660-669. (in Chinese)
Lutz AF, Immerzeel WW, Shrestha AB, et al., 2014. Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation. Nature Climate Change, 4(7): 587-592. DOI: 10.1038/NCLIMATE2237.
doi: 10.1038/NCLIMATE2237
Mattson LE, Gardner JS, 1989. Energy exchanges and ablation rates on the debris-covered Rakhiot Glacier, Pakistan. Zeitschrift für Gletscherkunde und Glazialgeologie, 25(1): 17-32.
Mattson LE, Gardner JS, Yong GJ, 1993. Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab, Himalaya. IAHS Publication, 218: 289-296.
Mihalcea C, Mayer C, Diolaiuti G, et al., 2008. Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan. Annals of Glaciology, 48: 49-57. DOI: 10.3189/172756408784700680.
doi: 10.3189/172756408784700680
Mayer C, Lambrecht A, Mihalcea C, et al., 2010. Analysis of glacial meltwater in Bagrot Valley, Karakoram. Mountain Research and Development, 30(2): 169-177. DOI: 10.1659/MRD-JOURNAL-D-09-00043.1.
doi: 10.1659/MRD-JOURNAL-D-09-00043.1
Miles KE, Hubbard B, Quincey DJ, et al., 2018. Polythermal structure of a Himalayan debris-covered glacier revealed by borehole thermometry. Scientific Reports, 8(1): 1-9. DOI: 10.1038/s41598-018-34327-5.
doi: 10.1038/s41598-018-34327-5
Mölg N, Bolch T, Rastner P, et al., 2018. A consistent glacier inventory for the Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges. Earth System Science Data Discussions, 10: 1807-1827. DOI: 10.5194/essd-10-1807-2018.
doi: 10.5194/essd-10-1807-2018
Nakawo M, Young GJ, 1981. Field experiments to determine the effect of a debris layer on ablation of glacier ice. Annals of Glaciology, 2: 85-91. DOI: 10.3189/172756481794352432.
doi: 10.3189/172756481794352432
Nakawo M,Young GJ, 1982. Estimate of glacier ablation under a debris layer from surface temperature and meteorological variables. Journal of Glaciology, 28(98): 29-34. DOI: 10.3189/S002214300001176X.
doi: 10.3189/S002214300001176X
Nakawo M, Iwata S, Watanabe O, et al., 1986. Processes which distribute supraglacial debris on the Khumbu Glacier, Nepal Himalaya. Annals of Glaciology, 8: 129-131. DOI: 10.3189/S0260305500001294.
doi: 10.3189/S0260305500001294
Nakawo M, Rana B, 1999. Estimate of ablation rate of glacier ice under a supraglacial debris layer. Geografiska Annaler: Series A, Physical Geography, 81(4): 695-701. DOI: 10. 1111/1468-0459.00097.
doi: 10. 1111/1468-0459.00097
Nakawo M, Yabuki H, Sakai A, 1999. Characteristics of Khumbu Glacier, Nepal Himalaya: recent change in the debris-covered area. Annals of Glaciology, 28: 118-122. DOI: 10.3189/172756499781821788.
doi: 10.3189/172756499781821788
Nicholson LI, Benn DI, 2006. Calculating ice melt beneath a debris layer using meteorological data. Journal of Glaciology, 52(178): 463-470. DOI: 10.3189/172756506781828584.
doi: 10.3189/172756506781828584
Nuimura T, Fujita K, Fukui K, et al., 2011. Temporal changes in elevation of the debris-covered ablation area of Khumbu Glacier in the Nepal Himalaya since 1978. Arctic, Antarctic, and Alpine Research, 43(2): 246-255. DOI: 10.1657/1938-4246-43.2.246.
doi: 10.1657/1938-4246-43.2.246
Nuimura T, Fujita K, Yamaguchi S, et al., 2012. Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992-2008. Journal of Glaciology, 58(210): 648-656. DOI: 10.3189/2012JoG11J061.
doi: 10.3189/2012JoG11J061
Östrem G, 1959. Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geografiska Annaler, 41(4): 228-230. DOI: 10.1080/20014422.1959. 11907953.
doi: 10.1080/20014422.1959. 11907953
Racoviteanu AE, Paul F, Raup B, et al., 2009. Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Annals of Glaciology, 50(53): 53-69. DOI: 10.3189/172756410790595804.
doi: 10.3189/172756410790595804
Pellicciotti F, Stephan C, Miles ES, et al., 2015. Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999. Journal of Glaciology, 61(226): 373-386. DOI: 10.3189/2015JoG13J237.
doi: 10.3189/2015JoG13J237
Pritchard HD, 2019. Asia's shrinking glaciers protect large populations from drought stress. Nature, 569(7758): 649-654. DOI: 10.1038/s41586-019-1240-1.
doi: 10.1038/s41586-019-1240-1
Rana B, Nakawo M, Fukushima Y, et al., 1997. Application of a conceptual precipitation-runoff model (HYGYMODEL) in a debris-covered glacierized basin in the Langtang Valley, Nepal Himalaya. Annals of Glaciology, 25: 226-231. DOI: 10.3189/S0260305500014087.
doi: 10.3189/S0260305500014087
Rounce DR, McKinney DC, 2014. Debris thickness of glaciers in the Everest area (Nepal Himalaya) derived from satellite imagery using a nonlinear energy balance model. The Cryosphere, 8: 1317-1329. DOI: 10.5194/tc-8-1317-2014.
doi: 10.5194/tc-8-1317-2014
Sakai A, Nuimura T, Fujita K, et al., 2015. Climate regime of Asian glaciers revealed by Gamdam glacier inventory. The Cryosphere, 9(3): 865-880. DOI: 10.5194/tc-9-865-2015.
doi: 10.5194/tc-9-865-2015
Rounce DR, Khurana T, Short MB, et al., 2020. Quantifying parameter uncertainty in a large-scale glacier evolution model using Bayesian inference: application to High Mountain Asia. Journal of Glaciology, 66(256): 175-187. DOI: 10.1017/jog.2019.91.
doi: 10.1017/jog.2019.91
Singh P, Ramasastri KS, Singh UK, et al., 1995. Hydrological characteristics of the Dokriani Glacier in the Garhwal Himalayas. Hydrological Sciences Journal, 40(2): 243-257. DOI: 10.1080/02626669509491407.
doi: 10.1080/02626669509491407
Suzuki R, Fujita K, Ageta Y, 2007. Spatial distribution of thermal properties on debris-covered glaciers in the Himalayas derived from ADTER data. Bulletin of Glaciological Research, 24: 13-22.
Scherler D, Bookhagen B, Strecker MR, 2011. Hillslope‐glacier coupling: The interplay of topography and glacial dynamics in High Asia. Journal of Geophysical Research: Earth Surface, 116(F2): F02019. DOI: 10.1029/2010JF001751.
doi: 10.1029/2010JF001751
Scherler D, Wulf H, Gorelick N, 2018. Global assessment of supraglacial debris‐cover extents. Geophysical Research Letters, 45(21): 11798-11805. DOI: 10.1029/2018GL080158.
doi: 10.1029/2018GL080158
Takeuchi Y, Kayastha RB, Nakawo M, 2000. Characteristics of ablation and heat balance in debris-free and debris-covered areas on Khumbu Glacier, Nepal Himalayas, in the pre-monsoon season. IAHS Publication, 264: 53-62.
Vincent C, Wagnon P, Shea JM, et al., 2016. Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10: 1845-1858. DOI: 10.5194/tc-10-1845-2016.
doi: 10.5194/tc-10-1845-2016
Xie FM, Liu SY, Wu KP, et al., 2020.Upward Expansion of Supra-Glacial Debris Cover in the Hunza Valley, Karakoram, During 1990∼2019. Frontiers in Earth Science, 8: 308. DOI: 10.3389/feart.2020.00308.
doi: 10.3389/feart.2020.00308
Yüksel A, Akay AE, Gundogan R, 2008. Using ASTER imagery in land use/cover classification of eastern Mediterranean landscapes according to CORINE land cover project. Sensors, 8(2): 1237-1251. DOI: 10.3390/s8021287.
doi: 10.3390/s8021287
Yao TD, Thompson L, Yang W, et al., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9): 663-667. DOI: 10.1038/NCLIMATE1580.
doi: 10.1038/NCLIMATE1580
Zhang Y, Liu SY, Ding YJ, 2007. Glacier meltwater and runoff modelling, Keqicar Baqi glacier, southwestern Tien Shan, China. Journal of Glaciology, 53(180): 91-98. DOI: 10. 3189/172756507781833956.
doi: 10. 3189/172756507781833956
Zhang Y, Fujita K, Liu SY, et al., 2011. Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery. Journal of Glaciology, 57(206): 1147-1157. DOI: 10.3189/002214311798843331.
doi: 10.3189/002214311798843331
Zhang Y, Hirabayashi Y, Liu Q, et al., 2015. Glacier runoff and its impact in a highly glacierized catchment in the southeastern Tibetan Plateau: past and future trends. Journal of Glaciology, 61(228): 713-730. DOI: 10.3189/2015JoG14J188.
doi: 10.3189/2015JoG14J188
Zhang Y, Hirabayashi Y, Fujita K, et al., 2016. Heterogeneity in supraglacial debris thickness and its role in glacier mass changes of the Mount Gongga. Science China Earth Sciences, 59(1): 170-184. DOI: 10.1007/s11430-015-5118-2.
doi: 10.1007/s11430-015-5118-2
Zhang Y, Liu SY, 2017. Research progress on debris thickness estimation and its effect on debris-covered glaciers in western China. Acta Geographica Sinica, 72(9): 1606-1620. DOI: 10.11821/dlxb201709006. (in Chinese)
doi: 10.11821/dlxb201709006.
Zhang Y, Liu SY, Liu Q, et al., 2019. The role of debris cover in catchment runoff: A case study of the Hailuogou Catchment, South-Eastern Tibetan Plateau. Water, 11(12): 2601. DOI: 10.3390/w11122601.
doi: 10.3390/w11122601
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mohan Bahadur Chand,Rijan Bhakta Kayastha. Study of thermal properties of supraglacial debris and degree-day factors on Lirung Glacier, Nepal[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 357 -368 .
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369 -378 .
[3] YanZai Wang, YongQiu Wu, MeiHui Pan, RuiJie Lu. Comparison of two classification methods to identify grain size fractions of aeolian sediment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 413 -420 .
[4] YinHuan Ao, ShiHua Lyu, ZhaoGuo Li, LiJuan Wen, Lin Zhao. Numerical simulation of the climate effect of high-altitude lakes on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 379 -391 .
[5] Zhuo Ga, Za Dui, Duodian Luozhu, Jun Du. Comparison of precipitation products to observations in Tibet during the rainy season[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 392 -403 .
[6] Rong Yang, JunQia Kong, ZeYu Du, YongZhong Su. Altitude pattern of carbon stocks in desert grasslands of an arid land region[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 404 -412 .
[7] Yang Qiu, ZhongKui Xie, XinPing Wang, YaJun Wang, YuBao Zhang, YuHui He, WenMei Li, WenCong Lv. Effect of slow-release iron fertilizer on iron-deficiency chlorosis, yield and quality of Lilium davidii var. unicolor in a two-year field experiment[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 421 -427 .
[8] Ololade A. Oyedapo,Joseph M. Agbedahunsi,H. C Illoh,Akinwumi J. Akinloye. Comparative foliar anatomy of three Khaya species (Meliaceae) used in Nigeria as antisickling agent[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 279 -285 .
[9] YuMing Wei, XiaoFei Ma, PengShan Zhao. Transcriptomic comparison to identify rapidly evolving genes in Braya humilis[J]. Sciences in Cold and Arid Regions, 2018, 10(5): 428 -435 .
[10] Yong Chen, Tao Wang, LiHua Zhou, Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia[J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286 -292 .