Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (6): 447-460.doi: 10.3724/SP.J.1226.2020.00447
Previous Articles Next Articles
YaJie Zheng,Yong Zhang(),Ju Gu,Xin Wang,ZongLi Jiang,JunFeng Wei
Alley RE, Nilsen M, 2001. Algorithm theoretical basis document for: brightness temperature Version 3.1. Jet Propulsion Laboratory, 14. | |
Archer DR, Fowler HJ, 2004. Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrology and Earth System Sciences, 8(1): 47-61. DOI: 10.5194/hess-8-47-2004.
doi: 10.5194/hess-8-47-2004 |
|
Ashraf M, Khan AR, 2016. Biafo Glacier Field Investigations 2015. WAPDA, Pakistan. | |
Ashraf M, Khan AR, 2017. Barpu Glacier Field Investigations 2014. WAPDA, Pakistan. | |
Braithwaite RJ, Raper S, 2009. Estimating equilibrium-line altitude (ELA) from glacier inventory data. Annals of Glaciology, 50(53): 127-132. DOI: 10.3189/172756410790595930.
doi: 10.3189/172756410790595930 |
|
Bookhagen B, Burbank DW, 2010. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface, 115: F03019. DOI: 10.1029/2009JF001426.
doi: 10.1029/2009JF001426 |
|
Benn DI, Bolch T, Hands K, et al., 2012. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Science Reviews, 114(1-2): 156-174. DOI: 10.1016/j.earscirev.2012.03.008.
doi: 10.1016/j.earscirev.2012.03.008 |
|
Bolch T, Kulkarni A, Kääb A, et al., 2012. The state and fate of Himalayan glaciers. Science, 336(6079): 310-314. DOI: 10.1126/science.1215828.
doi: 10.1126/science.1215828 |
|
Bhambri R, Bolch T, Kawishwar P, et al., 2013. Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram. The Cryosphere, 7(5): 1385-1398. DOI: 10. 5194/tc-7-1385-2013.
doi: 10. 5194/tc-7-1385-2013 |
|
Cogley JG, Hock R, Rasmussen LA, et al., 2011. Glossary of glacier mass balance and related terms. UNESCO/IHP: Paris, France. DOI: 10.5167/uzh-53475.
doi: 10.5167/uzh-53475 |
|
Collier E, Maussion F, Nicholson LI, et al., 2015. Impact of debris cover on glacier ablation and atmosphere-glacier feedbacks in the Karakoram. The Cryosphere, 9: 1617-1632. DOI: 10.5194/tc-9-1617-2015.
doi: 10.5194/tc-9-1617-2015 |
|
Consortium RGI, 2017. Randolph Glacier Inventory-A Dataset of Global Glacier Outlines: Version 6.0: Technical Report. Global Land Ice Measurements from Space, Colorado, USA. | |
Fujita K, Sakai A, 2014. Modelling runoff from a Himalayan debris-covered glacier. Hydrology and Earth System Sciences, 18(7): 2679-2694. DOI: 10.5194/hess-18-2679-2014.
doi: 10.5194/hess-18-2679-2014 |
|
Gardelle J, Berthier E, Arnaud Y, 2012. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geoscience, 5(5): 322-325. DOI: 10.1038/NGEO01450.
doi: 10.1038/NGEO01450 |
|
Gibson MJ, Glasser NF, Quincey DJ, et al., 2017. Temporal variations in supraglacial debris distribution on Baltoro Glacier, Karakoram between 2001 and 2012. Geomorphology, 295: 572-585. DOI: 10.1016/j.geomorph.2017.08.012.
doi: 10.1016/j.geomorph.2017.08.012 |
|
Groos AR, Mayer C, Smiraglia C, et al., 2017. A first attempt to model region-wide glacier surface mass balances in the karakoram: findings and future challenges. Geografia Fisica e Dinamica Quaternaria, 40: 137-159. DOI: 10.4461/GFDQ2017.40.10.
doi: 10.4461/GFDQ2017.40.10 |
|
Haeberli W, Hölzle M, 1995. Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: a pilot study with the European Alps. Annals of Glaciology, 21: 206-212. | |
Hewitt K, 2011. Glacier change, concentration, and elevation effects in the Karakoram Himalaya, Upper Indus Basin. Mountain Research and Development, 31(3): 188-200. DOI: 10.1659/MRD-JOURNAL-D-11-00020.1.
doi: 10.1659/MRD-JOURNAL-D-11-00020.1 |
|
Iturrizaga L, 2011. Trends in 20th century and recent glacier fluctuations in the Karakoram Mountains. Zeitschrift für Geomorphologie, 55(3): 205-231. DOI: 10.1127/0372-8854/2011/0055S3-0059.
doi: 10.1127/0372-8854/2011/0055S3-0059 |
|
Immerzeel WW, Van Beek L, Konz M, et al., 2012. Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change, 110(3-4): 721-736. DOI: 10.1007/s10584-011-0143-4.
doi: 10.1007/s10584-011-0143-4 |
|
Immerzeel WW, Lutz AF, Andrade M, et al., 2020. Importance and vulnerability of the world's water towers. Nature, 577(7790): 364-369. DOI: 10.1038/s41586-019-1822-y.
doi: 10.1038/s41586-019-1822-y |
|
Kalnay E, Kanamitsu M, Kistler R, et al., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of American Meteorological Society, 77: 437-471. | |
Kraus H, 1975. An energy balance model for ablation in mountainous areas. IAHS Publication, 104: 74-82. | |
Kayastha RB, Takeuchi Y, Nakawo M, et al., 2000. Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal using a positive degree-day factor. IAHS Publication, 264: 71-81. | |
Kääb A, Berthier E, Nuth C, et al., 2012. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412): 495-498. DOI: 10.1038/nature11324.
doi: 10.1038/nature11324 |
|
Kääb A, Treichler D, Nuth C, et al., 2015. Brief Communication: Contending estimates of 2003-2008 glacier mass balance over the Pamir-Karakoram-Himalaya. The Cryosphere, 9(2): 557-564. DOI: 10.5194/tc-9-557-2015.
doi: 10.5194/tc-9-557-2015 |
|
Kirkbride MP, Deline P, 2013. The formation of supraglacial debris covers by primary dispersal from transverse englacial debris bands. Earth Surface Processes and Landforms, 38(15): 1779-1792. DOI: 10.1002/esp.3416.
doi: 10.1002/esp.3416 |
|
Kraaijenbrink P, Bierkens M, Lutz AF, et al., 2017. Impact of a global temperature rise of1.5 degrees Celsius on Asia's glaciers. Nature, 549(7671): 257-260. DOI: 10.1038/nature23878.
doi: 10.1038/nature23878 |
|
Li NJ, Cai XX, Li J, 1981. Discussion on some Hydrological features of the Batura Glacier, Karakoram. Journal of Glaciology and Geocryology, 2: 8. (in Chinese) | |
Liu Q, Liu SY, 2012. Progress in the study of englacial and subglacial drainage system of glaciers. Advances in Earth Science, 27(6): 660-669. (in Chinese) | |
Lutz AF, Immerzeel WW, Shrestha AB, et al., 2014. Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation. Nature Climate Change, 4(7): 587-592. DOI: 10.1038/NCLIMATE2237.
doi: 10.1038/NCLIMATE2237 |
|
Mattson LE, Gardner JS, 1989. Energy exchanges and ablation rates on the debris-covered Rakhiot Glacier, Pakistan. Zeitschrift für Gletscherkunde und Glazialgeologie, 25(1): 17-32. | |
Mattson LE, Gardner JS, Yong GJ, 1993. Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Punjab, Himalaya. IAHS Publication, 218: 289-296. | |
Mihalcea C, Mayer C, Diolaiuti G, et al., 2008. Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan. Annals of Glaciology, 48: 49-57. DOI: 10.3189/172756408784700680.
doi: 10.3189/172756408784700680 |
|
Mayer C, Lambrecht A, Mihalcea C, et al., 2010. Analysis of glacial meltwater in Bagrot Valley, Karakoram. Mountain Research and Development, 30(2): 169-177. DOI: 10.1659/MRD-JOURNAL-D-09-00043.1.
doi: 10.1659/MRD-JOURNAL-D-09-00043.1 |
|
Miles KE, Hubbard B, Quincey DJ, et al., 2018. Polythermal structure of a Himalayan debris-covered glacier revealed by borehole thermometry. Scientific Reports, 8(1): 1-9. DOI: 10.1038/s41598-018-34327-5.
doi: 10.1038/s41598-018-34327-5 |
|
Mölg N, Bolch T, Rastner P, et al., 2018. A consistent glacier inventory for the Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges. Earth System Science Data Discussions, 10: 1807-1827. DOI: 10.5194/essd-10-1807-2018.
doi: 10.5194/essd-10-1807-2018 |
|
Nakawo M, Young GJ, 1981. Field experiments to determine the effect of a debris layer on ablation of glacier ice. Annals of Glaciology, 2: 85-91. DOI: 10.3189/172756481794352432.
doi: 10.3189/172756481794352432 |
|
Nakawo M,Young GJ, 1982. Estimate of glacier ablation under a debris layer from surface temperature and meteorological variables. Journal of Glaciology, 28(98): 29-34. DOI: 10.3189/S002214300001176X.
doi: 10.3189/S002214300001176X |
|
Nakawo M, Iwata S, Watanabe O, et al., 1986. Processes which distribute supraglacial debris on the Khumbu Glacier, Nepal Himalaya. Annals of Glaciology, 8: 129-131. DOI: 10.3189/S0260305500001294.
doi: 10.3189/S0260305500001294 |
|
Nakawo M, Rana B, 1999. Estimate of ablation rate of glacier ice under a supraglacial debris layer. Geografiska Annaler: Series A, Physical Geography, 81(4): 695-701. DOI: 10. 1111/1468-0459.00097.
doi: 10. 1111/1468-0459.00097 |
|
Nakawo M, Yabuki H, Sakai A, 1999. Characteristics of Khumbu Glacier, Nepal Himalaya: recent change in the debris-covered area. Annals of Glaciology, 28: 118-122. DOI: 10.3189/172756499781821788.
doi: 10.3189/172756499781821788 |
|
Nicholson LI, Benn DI, 2006. Calculating ice melt beneath a debris layer using meteorological data. Journal of Glaciology, 52(178): 463-470. DOI: 10.3189/172756506781828584.
doi: 10.3189/172756506781828584 |
|
Nuimura T, Fujita K, Fukui K, et al., 2011. Temporal changes in elevation of the debris-covered ablation area of Khumbu Glacier in the Nepal Himalaya since 1978. Arctic, Antarctic, and Alpine Research, 43(2): 246-255. DOI: 10.1657/1938-4246-43.2.246.
doi: 10.1657/1938-4246-43.2.246 |
|
Nuimura T, Fujita K, Yamaguchi S, et al., 2012. Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992-2008. Journal of Glaciology, 58(210): 648-656. DOI: 10.3189/2012JoG11J061.
doi: 10.3189/2012JoG11J061 |
|
Östrem G, 1959. Ice melting under a thin layer of moraine, and the existence of ice cores in moraine ridges. Geografiska Annaler, 41(4): 228-230. DOI: 10.1080/20014422.1959. 11907953.
doi: 10.1080/20014422.1959. 11907953 |
|
Racoviteanu AE, Paul F, Raup B, et al., 2009. Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Annals of Glaciology, 50(53): 53-69. DOI: 10.3189/172756410790595804.
doi: 10.3189/172756410790595804 |
|
Pellicciotti F, Stephan C, Miles ES, et al., 2015. Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999. Journal of Glaciology, 61(226): 373-386. DOI: 10.3189/2015JoG13J237.
doi: 10.3189/2015JoG13J237 |
|
Pritchard HD, 2019. Asia's shrinking glaciers protect large populations from drought stress. Nature, 569(7758): 649-654. DOI: 10.1038/s41586-019-1240-1.
doi: 10.1038/s41586-019-1240-1 |
|
Rana B, Nakawo M, Fukushima Y, et al., 1997. Application of a conceptual precipitation-runoff model (HYGYMODEL) in a debris-covered glacierized basin in the Langtang Valley, Nepal Himalaya. Annals of Glaciology, 25: 226-231. DOI: 10.3189/S0260305500014087.
doi: 10.3189/S0260305500014087 |
|
Rounce DR, McKinney DC, 2014. Debris thickness of glaciers in the Everest area (Nepal Himalaya) derived from satellite imagery using a nonlinear energy balance model. The Cryosphere, 8: 1317-1329. DOI: 10.5194/tc-8-1317-2014.
doi: 10.5194/tc-8-1317-2014 |
|
Sakai A, Nuimura T, Fujita K, et al., 2015. Climate regime of Asian glaciers revealed by Gamdam glacier inventory. The Cryosphere, 9(3): 865-880. DOI: 10.5194/tc-9-865-2015.
doi: 10.5194/tc-9-865-2015 |
|
Rounce DR, Khurana T, Short MB, et al., 2020. Quantifying parameter uncertainty in a large-scale glacier evolution model using Bayesian inference: application to High Mountain Asia. Journal of Glaciology, 66(256): 175-187. DOI: 10.1017/jog.2019.91.
doi: 10.1017/jog.2019.91 |
|
Singh P, Ramasastri KS, Singh UK, et al., 1995. Hydrological characteristics of the Dokriani Glacier in the Garhwal Himalayas. Hydrological Sciences Journal, 40(2): 243-257. DOI: 10.1080/02626669509491407.
doi: 10.1080/02626669509491407 |
|
Suzuki R, Fujita K, Ageta Y, 2007. Spatial distribution of thermal properties on debris-covered glaciers in the Himalayas derived from ADTER data. Bulletin of Glaciological Research, 24: 13-22. | |
Scherler D, Bookhagen B, Strecker MR, 2011. Hillslope‐glacier coupling: The interplay of topography and glacial dynamics in High Asia. Journal of Geophysical Research: Earth Surface, 116(F2): F02019. DOI: 10.1029/2010JF001751.
doi: 10.1029/2010JF001751 |
|
Scherler D, Wulf H, Gorelick N, 2018. Global assessment of supraglacial debris‐cover extents. Geophysical Research Letters, 45(21): 11798-11805. DOI: 10.1029/2018GL080158.
doi: 10.1029/2018GL080158 |
|
Takeuchi Y, Kayastha RB, Nakawo M, 2000. Characteristics of ablation and heat balance in debris-free and debris-covered areas on Khumbu Glacier, Nepal Himalayas, in the pre-monsoon season. IAHS Publication, 264: 53-62. | |
Vincent C, Wagnon P, Shea JM, et al., 2016. Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal. The Cryosphere, 10: 1845-1858. DOI: 10.5194/tc-10-1845-2016.
doi: 10.5194/tc-10-1845-2016 |
|
Xie FM, Liu SY, Wu KP, et al., 2020.Upward Expansion of Supra-Glacial Debris Cover in the Hunza Valley, Karakoram, During 1990∼2019. Frontiers in Earth Science, 8: 308. DOI: 10.3389/feart.2020.00308.
doi: 10.3389/feart.2020.00308 |
|
Yüksel A, Akay AE, Gundogan R, 2008. Using ASTER imagery in land use/cover classification of eastern Mediterranean landscapes according to CORINE land cover project. Sensors, 8(2): 1237-1251. DOI: 10.3390/s8021287.
doi: 10.3390/s8021287 |
|
Yao TD, Thompson L, Yang W, et al., 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9): 663-667. DOI: 10.1038/NCLIMATE1580.
doi: 10.1038/NCLIMATE1580 |
|
Zhang Y, Liu SY, Ding YJ, 2007. Glacier meltwater and runoff modelling, Keqicar Baqi glacier, southwestern Tien Shan, China. Journal of Glaciology, 53(180): 91-98. DOI: 10. 3189/172756507781833956.
doi: 10. 3189/172756507781833956 |
|
Zhang Y, Fujita K, Liu SY, et al., 2011. Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery. Journal of Glaciology, 57(206): 1147-1157. DOI: 10.3189/002214311798843331.
doi: 10.3189/002214311798843331 |
|
Zhang Y, Hirabayashi Y, Liu Q, et al., 2015. Glacier runoff and its impact in a highly glacierized catchment in the southeastern Tibetan Plateau: past and future trends. Journal of Glaciology, 61(228): 713-730. DOI: 10.3189/2015JoG14J188.
doi: 10.3189/2015JoG14J188 |
|
Zhang Y, Hirabayashi Y, Fujita K, et al., 2016. Heterogeneity in supraglacial debris thickness and its role in glacier mass changes of the Mount Gongga. Science China Earth Sciences, 59(1): 170-184. DOI: 10.1007/s11430-015-5118-2.
doi: 10.1007/s11430-015-5118-2 |
|
Zhang Y, Liu SY, 2017. Research progress on debris thickness estimation and its effect on debris-covered glaciers in western China. Acta Geographica Sinica, 72(9): 1606-1620. DOI: 10.11821/dlxb201709006. (in Chinese)
doi: 10.11821/dlxb201709006. |
|
Zhang Y, Liu SY, Liu Q, et al., 2019. The role of debris cover in catchment runoff: A case study of the Hailuogou Catchment, South-Eastern Tibetan Plateau. Water, 11(12): 2601. DOI: 10.3390/w11122601.
doi: 10.3390/w11122601 |
No related articles found! |
|