Sciences in Cold and Arid Regions ›› 2017, Vol. 9 ›› Issue (3): 261-266.doi: 10.3724/SP.J.1226.2017.00261

• ARTICLES • Previous Articles    

Using attributes of electromagnetic waves to determine the water content and frost table in a permafrost area

ZhiChun Zhang1, YuPeng Shen2, Xiao Wang2, YaHu Tian2, JianKun Liu2, Bagdat Teltayev3   

  1. 1. Shen-Shuo Railway Branch, China Shenhua Energy Company Limited, Yulin, Shaanxi 719316, China;
    2. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    3. Kazakhstan Highway Research Institute, Almata, Kazakhstan
  • Received:2016-11-21 Revised:2016-12-21 Published:2018-11-23
  • Contact: Shen YuPeng, YuPeng Shen, Associate Professor of School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China. Tel: +86-10-51683594; E-mail:
  • Supported by:
    This work was supported by the Fundamental Research Funds for the Central Universities (2015JBM064),the 49th Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars infrastructure in State Education Ministry,and the research project entitled "The freezing injury evaluation of subgrade and remediation technology research in Shenchi-Shuozhou Railway"(No.2015-10),whose support is acknowledged.

Abstract: The thawing-melting of the permafrost damages the subground of highways on the Qinghai-Tibet Plateau. With the application of ground-penetrating-radar (GPR) technology, the maximum permafrost melting interface can be effectively distinctly differentiated and imaged. A hierarchical feature of the permafrost region is shown clearly on the imaging profile of GPR data. The complete ablation zone or part of it is displayed distinctly. In addition, the details of subsurface layers can be effectively characterized by GPR attribute-analysis technology. With the attribute calculation and filter, the instantaneous amplitude, instantaneous frequency, and relative wave impedance can be applied in a more efficient way to divide the complete ablation zone, part of the ablation and non-ablation interface. The relative distribution of water content in a seasonally thawing permafrost region can be obtained through a comprehensive GPR attribute analysis.

Key words: permafrost thawing, ground-penetrating-radar, geophysical attribute, relative water content

Achim H, Olaf E, Martin S, 2010. Temporal observations of a seasonal snowpack using upward-looking GPR. Hydrological Processes, 24(22): 3133-3145. DOI: 10.1002/hyp.7749. [DOI:10.1002/hyp.7749]
Ali IK, Gabor T, Peter N, et al., 2015. GPR survey for reinforcement of historical heritage construction at fire tower of Sopron. Journal of Applied Geophysics, 112: 79-90. DOI: 10.1016/j.jappgeo.2014.11.005. [DOI:10.1016/j.jappgeo.2014.11.005]
Amir M, Alania B, Morteza A, et al., 2013. Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment. Journal of Applied Geophysics, 97: 45-54. DOI: 10.1016/j.jappgeo.04.009. [DOI:10.1016/j.jappgeo.04.009]
Andrea B, 2010. Water content evaluation in unsaturated soil using GPR signal analysis in the frequency domain. Journal of Applied Geophysics, 71(1): 26-35. DOI: 10.1016/j.jappgeo.2010.03.001. [DOI:10.1016/j.jappgeo.2010.03.001]
Baker GS, Steeples DW, Schmeissner C, et al., 2001. Near-surface imaging using coincident seismic and GPR data. Geophysical Research Letters, 28(4): 627-630. DOI: 10.1029/2000GL008538. [DOI:10.1029/2000GL008538]
Bradford JH, Dickins DF, Brandvik PJ, 2010. Assessing the potential to detect oil spills in and under snow using airborne ground-penetrating radar. Geophysics, 75(2): G1-G12. DOI: 10.1190/1.3312184. [DOI:10.1190/1.3312184]
Chopra S, Marfurt KJ, 2005. Seismic attributes-a historical perspective. Geophysics, 70(5): 3SO-28SO.
Chopra S, Marfurt KJ, 2006. Seismic attributes-a promising aid for geological prediction. CSEG Recorder 2006 Special Edition, pp. 115-126.
Davis JL, Annan AP, 1989. Ground penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophysical Prospecting, 37: 531-551. DOI: 10.1111/j.1365-2478.1989.tb02221.x. [DOI:10.1111/j.1365-2478.1989.tb02221.x]
Hinkel KM, Doolittle JA, Bockheim JG, et al., 2001. Detection of subsurface permafrost features with ground-penetrating radar, Barrow, Alaska. Permafrost and Periglacial Processes, 12(2): 179-190. DOI: 10.1002/ppp.369. [DOI:10.1002/ppp.369]
Jiang H, Shan W, Hu ZG, et al., 2014. Formation mechanism and deformation characteristics of cut layer rock landslide in island permafrost region. Landslide Science for A Safer Geoenvironment, 3: 471-480. DOI: 10.1007/978-3-319-04996-0_72. [DOI:10.1007/978-3-319-04996-0_72]
João ADRJ, David LDC, Thales ESDJ, et al., 2014. Characterization of collapsed paleocave systems using GPR attributes. Journal of Applied Geophysics, 103: 43-56. DOI: 10.1016/j.jappgeo.2014.01.007. [DOI:10.1016/j.jappgeo.2014.01.007]
Moorman BJ, Robinson SD, Burgess MM, 2003. Imaging periglacial conditions with ground-penetrating radar. Permafrost and Periglacial Processes, 14(4): 319-329. DOI: 10.1002/ppp.463. [DOI:10.1002/ppp.463]
Niu FJ, Luo J, Lin ZJ, et al., 2014. Thaw-induced slope failures and susceptibility mapping in permafrost regions of the Qinghai-Tibet Engineering Corridor, China. Natural Hazards, 74(3): 1667-1682. DOI: 10.1007/s11069-014-1267-4. [DOI:10.1007/s11069-014-1267-4]
Steelman CM, Anthony LE, 2009. Evolution of high-frequency ground-penetrating radar direct ground wave propagation during thin frozen soil layer development. Cold Regions Science and Technology, 57(2): 116-122. DOI: 10.1016/j.coldregions.2009.01.007. [DOI:10.1016/j.coldregions.2009.01.007]
Treat DC, Wisser SM, Frolking S, 2013. Modelling the effects of climate change and disturbance on permafrost stability in northern organic soils. Mires and Peat, 12: 1-17.
Ursin B, 1983. Review of elastic and electromagnetic wave propagation in horizontally layered media. Geophysics, 48(1): 1063-1081. DOI: 10.1190/1.1441529. [DOI:10.1190/1.1441529]
Zhang MY, Pei WS, Zhang XY, et al., 2015. Lateral thermal disturbance of embankments in the permafrost regions of the Qinghai-Tibet Engineering Corridor. Natural Hazards, 78(3): 2121-2142. DOI: 10.1007/s11069-015-1823-6. [DOI:10.1007/s11069-015-1823-6]
Zhao WK, Forte E, Pipan M, et al., 2013. Ground Penetrating Radar (GPR) attribute analysis for archaeological prospection. Journal of Applied Geophysics, 97: 107-117. DOI: 10.1016/j.jappgeo.2013.04.010. [DOI:10.1016/j.jappgeo.2013.04.010]
No related articles found!
Full text



No Suggested Reading articles found!