Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (4): 282286.doi: 10.1016/j.rcar.2022.09.006.
• • 上一篇
Application of automated cone penetrometer for railway investigation using correlations with DCPI and Deflection Modulus
Yeob Kim Sang1,Won-Taek Hong2,Jong-Sub Lee1()
- 1.School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
2.Department of Civil & Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
ASTM D 6951, 2009. Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications, Annual Book of ASTM Standard, 04.03, ASTM International, West Conshohocken, PA, USA. | |
Hong WT, Byun YH, Kim SY, et al., 2016. Cone penetrometer incorporated with dynamic cone penetration method for investigation of track substructures. Smart Structures and Systems, 18(2): 197-216. DOI: https://doi.org/10.12989/sss. 2016.18.2.197 .
doi: 10.12989/sss. 2016.18.2.197 |
|
Kim SY, Hong WT, Lee JS, 2019. Role of the coefficient of uniformity on the California bearing ratio, penetration resistance, and small strain stiffness of coarse arctic soils. Cold Regions Science and Technology, 160: 230-241. DOI: https://doi.org/10.1016/j.coldregions.2019.02.012 .
doi: 10.1016/j.coldregions.2019.02.012 |
|
Kim SY, Lee JS, 2020. Energy correction of dynamic cone penetration index for reliable evaluation of shear strength in frozen sand-silt mixtures. Acta Geotechnica, 15(4): 947-961. DOI: 10.1007/s11440-019-00812-y .
doi: 10.1007/s11440-019-00812-y |
|
Kim SY, Lee JS, Hong WT, 2021. Subgrade assessment using automated dynamic cone penetrometer to manage geo-infrastructures. Smart Structures and Systems, 27(5): 861-870. DOI: https://doi.org/10.12989/sss.2021.27.5.861 .
doi: 10.12989/sss.2021.27.5.861 |
|
Kong SM, Kim DM, Lee DY, et al., 2018. Field and laboratory assessment of ground subsidence induced by underground cavity under the sewer pipe. Geomechanics & engineering, 16(3): 285-293. DOI: https://doi.org/10.12989/gae.2018. 16.3.285 .
doi: 10.12989/gae.2018. 16.3.285 |
|
Kumagai T, Yanagibashi T, Tsutsumi A, et al., 2020. Efficient surface wave method for investigation of the seabed. Soils and Foundations, 60(3): 648-667. | |
Sawangsuriya A, Edil TB, 2005. Evaluating stiffness and strength of pavement materials. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 158(4): 217-230. | |
Sujatha ER, Geetha AR, Jananee R, et al., 2018. Strength and mechanical behaviour of coir reinforced lime stabilized soil. Geomechanics and Engineering, 16(6): 627-634. | |
Usluogullari OF, Vipulanandan C, 2011. Stress-strain behavior and California bearing ratio of artificially cemented sand. Journal of Testing and Evaluation, 39(4): 637-645. | |
Zhang J, Yao Y, Zheng J, et al., 2018. Measurement of degree of compaction of fine-grained soil subgrade using light dynamic penetrometer. Advances in Civil Engineering, 2018: 1364868. | |
Zhang JH, Ding L, Zheng JL, et al., 2020. Deterioration mechanism and rapid detection of performances of an existing subgrade in southern China. Journal of Central South University, 27(7): 2134-2147. DOI: https://doi.org/10.1007/s11771-020-4436-5 .
doi: 10.1007/s11771-020-4436-5 |
No related articles found! |
|