Sciences in Cold and Arid Regions ›› 2016, Vol. 8 ›› Issue (1): 1-8.doi: 10.3724/SP.J.1226.2016.00001
• REVIEW •
Olof Andrén1,2, XueYong Zhao1, Thomas Kätterer3, Martin Bolinder3
Andrén O, Kätterer T, 1997. ICBM:The introductory carbon balance model for exploration of soil carbon balances. Ecological Applications, 7:1226-1236. Andrén O, Kätterer T, Juston J, et al., 2012. Soil carbon dynamics, climate, crops and soil type:Calculations using Introductory Carbon Balance Model (ICBM) and agricultural field trial data from sub-Saharan Africa. African Journal of Agricultural Re-search, 7:5800-5809. Andrén O, Kätterer T, Karlsson T, et al., 2008a. Soil C balances in Swedish agricultural soils 1990-2004, with preliminary projections. Nutrient Cycling in Agroecosystems, 81:129-144. Andrén O, Kihara J, Bationo A, et al., 2007. Soil climate and decomposer activity in sub-Saharan Africa estimated from standard weather station data:A simple climate index for soil carbon balance calculations. Ambio, 36:379-386. Andrén O, Kirchmann H, Kätterer T, et al., 2008b. Visions of a more precise soil biology. European Journal of Soil Science, 59:380-390. Andrén O, Zhao X, Liu X, 1994. Climate and litter decomposition in Naiman, Inner Mongolia, China. Ambio, 23:222-224. Bolinder MA, Andrén O, Kätterer T, et al., 2007. Soil carbon dynamics in Canadian agricultural ecoregions:Quantifying climatic influence on soil biological activity. Agriculture, Eco-systems & Environment, 122:461-470. Bolinder MA, Kätterer T, Andrén O, et al., 2012. Estimating carbon inputs to soil in forage-based crop rotations and modeling the effects on soil carbon dynamics in a Swedish long-term field experiment. Canadian Journal of Soil Science, 92:821-833. Carlsson M, Andrén O, Stenström J, et al., 2012. Charcoal appli-cation to arable soil:Effects on CO2 emissions. Communica-tions in Soil Science and Plant Analysis, 43:2262-2273. Feng S, Hu Q, Qian W, 2004. Quality control of daily meteorological data in China, 1951-2000:A new dataset. International Journal of Climatology, 24:853-870. Hansson AC, Zhao A, Andrén O, 1993. Fine-root growth dynamics of two shrubs in semiarid rangeland in Inner Mongolia, China. Ambio, 23:225-228. Hansson AC, Zhao A, Andrén O, 1995. Fine-root production in degraded vegetation in Horqin Sandy Rangeland in Inner Mongolia, China. Arid Soil Research and Rehabilitation, 9:1-13. Hénin S, Dupuis M, 1945. Essai de bilan de la matière organique du sol. Annales Agronomiques, 15:17-29. Lehmann J, 2007. Bio-energy in the black. Frontiers in Ecology and the Environment, 5:381-387. Luo Y, Zhao X, Andrén O, et al., 2014. Artificial root exudates and soil organic carbon mineralization in a degraded sandy grass-land in northern China. Journal of Arid Land, 6:423-431. R Core Team, 2013. R:A language and environment for statistical computing. Vienna, Austria:R Foundation for Statistical Computing. Open access available at:http://cran.r-project.org. Root-Bernstein M, Ladle RJ, 2014. Multilinguismo nas ciêncas ambientais:Ahora ya! (Multilingualism in Environmental Sciences:It's about time!). Ambio, 43(6):836-837. DOI:10.1007/s13280-014-0531-x. Smith P, Andrén O, Brussaard L, et al., 1998. Soil biota and global change at the ecosystem level:The role of soil biota in ma-thematical models. Global Change Biology, 4:773-784. Tenney FG, Waksman SA, 1929. Composition of natural organic materials and their decomposition in the soil:4. The nature and rapidity of decomposition of the various organic complexes in different plant materials, under aerobic conditions. Soil Science, 28:55-84. Yang YQ, Hou Q, Zhou CH, et al., 2008. Sand/dust storm processes in northeast Asia and associated large-scale circulations. At-mospheric Chemistry and Physics, 8:25-33. Zhang W, Skarpe C, 1995. Small-scale species dynamics in semi-arid steppe vegetation in Inner Mongolia. Journal of Ve-getation Science, 6:583-592. Zhao XY, Zhang CM, Zuo XA, 2009. Challenges to desertification reversion in Horqin Sandy Land. Chinese Journal of Applied Ecology, 20:1559-1564. Zhu Z, Yang Y (eds.), 1988. Desertification and Rehabilitation in China. The International Centre for Education and Research on Desertification Control, Lanzhou. Zuo XA, Knops JMH, Zhao X, et al., 2012. Indirect drivers of plant diversity-productivity relationship in semiarid sandy grass-lands. Biogeosciences, 9:1277-1289. |
[1] | MengQi Li,XingDong He,XiangXiang Yang,YueDan Zhao,YuBao Gao. Comparisons of plant calcium fraction between two different vegetation zones in semi-arid region [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 340-346. |
[2] | Na Li,ChangZhen Yan,JiaLi Xie,JianXia Ma. Cultivated-land change in Mu Us Sandy Land of China before and after the first-stage grain-for-green policy [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 347-353. |
[3] | RuiXia He, HuiJun Jin, XiaoLi Chang, YongPing Wang, LiZhong Wang. Freeze-thaw processes of active-layer soils in the Nanweng'he River National Natural Reserve in the Da Xing'anling Mountains, northern Northeast China [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 104-113. |
[4] | WenDa Huang, XueYong Zhao, YuLin Li, YuQiang Li, YaYong Luo. Relationship between the haplotype distribution of Artemisia halodendron (Asteraceae) and hydrothermal regions in Horqin Sandy Land, northern China [J]. Sciences in Cold and Arid Regions, 2018, 10(2): 151-158. |
[5] | YuQiang Li, JianPeng Zhang, XueYong Zhao, TongHui Zhang, YuLin Li, XinPing Liu, YinPing Chen. Comparison of soil physico-chemical properties under different land-use and cover types in northeastern China's Horqin Sandy Land [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 495-506. |
[6] | YongQing Luo, XueYong Zhao, JiePing Ding, Tao Wang. Vertical distribution of Artemisia halodendron root system in relation to soil properties in Horqin Sandy Land, NE China [J]. Sciences in Cold and Arid Regions, 2016, 8(5): 411-418. |
[7] | Yang Zhao, Peng Zhang, YiGang Hu, Lei Huang. Effects of artificial vegetation arrangement and structure on the colonization and development of biological soil crusts [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 343-349. |
|