Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (6): 407-418.doi: 10.3724/SP.J.1226.2019.00407.

    Next Articles

Influence of proximity to the Qinghai-Tibet highway and railway on variations of soil heavy metal concentrations and bacterial community diversity on the Tibetan Plateau

Xia Zhao1,2,JunFeng Wang3,Yun Wang4,Xiang Lu1,2,ShaoFang Liu1,2,YuBao Zhang1,2,ZhiHong Guo1,2,ZhongKui Xie1,2,RuoYu Wang1,2()   

  1. 1. Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2. Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, Gansu 730000, China
    3. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    4. Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2019-06-25 Accepted:2019-10-17 Online:2019-12-31 Published:2020-01-07
  • Contact: RuoYu Wang E-mail:wangruoyu@lzb.ac.cn

Abstract:

An understanding of soil microbial communities is crucial in roadside soil environmental assessments. The 16S rRNA sequencing of a stressed microbial community in soil adjacent to the Qinghai-Tibet Highway (QTH) revealed that the accumulation of heavy metals (over about 10 years) has affected the diversity of bacterial abundance and microbial community structure. The proximity of a sampling site to the QTH/Qinghai-Tibet Railway (QTR), which is effectively a measure of the density of human engineering, was the dominant factor influencing bacterial community diversity. The diversity of bacterial communities shows that 16S rRNA gene abundance decreased in relation to proximity to the QTH and QTR in both alpine wetland and meadow areas. The dominant phyla across all samples were Actinobacteria and Proteobacteria. The concentration of Cr and Cd in the soil were positively correlated with proximity to the QTH and QTR (MC/WC sampling sites), and Ni, Co, and V were positively correlated with proximity to the QTH and QTR (MA/WA sampling sites). The results presented in this study provide an insight into the relationships among heavy metals and soil microbial communities, and have important implications for assessing and predicting the impacts of human-induced activities from the QTH and QTR in such an extreme and fragile environment.

Key words: Qinghai-Tibet Highway (QTH), Qinghai-Tibet Railway (QTR), soil bacterial community, alpine wetland, alpine meadow, heavy metal

Figure 1

A geographic map showing the locations of sampling sites on the Qinghai-Tibet Plateau (QTP), China. All 24 samples (three from each of the MA, WA, MB, WB, MC, WC, MCK, and WCK sites) were collected at the same distance (10 m) from the Qinghai-Tibet Highway (QTH) roadside in alpine wetland and meadow ecotype areas. There were three replicates at each sampling site (red dots). In the naming of these samples, A, B, and C indicate increasing distance from the Qinghai-Tibet Railway (QTR) (i.e., from near to far)"

Figure 2

Richness and alpha diversity indices (operational taxonomic units (OTUs), Chao1, Shannon, and Simpson) Pooled samples from the MA, WA, MB, WB, MC, WC, MCK, and WCK sites were used to calculate alpha diversity indices"

Figure 3

Phylum distribution (a) Relative abundance of the dominant bacterial phyla at different distances from the Qinghai-Tibet Highway (QTH) and Qinghai-Tibet Railway (QTR); (b) Principal component analysis (PCA) of phylum abundance data using Canoco 5.0 software"

Table 1

Descriptive statistics of heavy metal concentrations (mg/kg) in soils"

Location and data format V Cr Co Ni Cu Zn Cd Pb
WA, n=3 Mean 92.63 79.19 10.96 27.45 34.45 293.13 0.62 62.43
SD 11.09 12.44 0.25 0.69 6.92 113.14 0.15 10.41
WB, n=3 Mean 81.78 89.62 9.37 24.33 25.16 141.16 0.22 44.88
SD 5.35 27.13 1.75 3.55 7.58 26.08 0.06 14.84
WC, n=3 Mean 110.20 80.37 11.46 30.95 30.78 220.82 0.57 74.68
SD 14.30 5.96 0.72 2.91 6.59 95.69 0.14 21.46
WCK, n=3 Mean 93.95 77.41 8.89 25.27 17.73 124.90 0.85 39.31
SD 2.57 7.96 0.29 0.66 1.20 23.80 0.06 2.85
MA, n=3 Mean 79.28 90.67 8.16 22.37 23.78 100.72 0.55 64.18
SD 4.14 13.05 0.36 1.04 3.61 19.68 0.12 22.19
MB, n=3 Mean 90.85 113.34 8.30 22.84 21.49 84.29 0.82 33.36
SD 2.47 16.89 0.28 1.09 1.70 7.44 0.09 0.75
MC, n=3 Mean 111.95 68.72 10.59 27.58 20.20 93.40 0.41 21.91
SD 39.83 19.63 3.79 10.21 3.69 37.40 0.11 4.60
MCK, n=3 Mean 86.86 78.35 7.45 20.64 17.11 57.05 0.39 21.60
SD 13.87 15.15 0.24 0.55 1.17 2.94 0.14 1.12
Upper continental crust a 135 100 25 75 55 70 0.2 12.5
Background of United Statesb 80 54 9.1 19 25 60 - 19
Background of mainland Chinac 82.4 61.0 12.7 26.9 22.6 74.2 0.097 26.0
Background of Tibet, Chinad 75.9 77.4 11.6 32.1 21.9 73.7 0.080 28.9

Table 2

Spearman's correlations between the distance from the Qinghai-Tibet Highway (QTH) and Qinghai-Tibet Railway (QTR) and environmental attributes in the studied soils"

Environmental attribute (ppm) r value Environmental attribute r value
Ni 0.732** SWC (%) 0.639**
Co 0.671** Clay (%) 0.257
V 0.643** Sand (%) 0.218
Cr 0.293 Silt (%) 0.226
Cd 0.170 pH 0.172
Pb 0.148 TOC (g/kg) 0.153
Zn 0.111 TN (g/kg) 0.123
Cu 0.041

Figure 4

Canonical correspondence analysis (CCA) of environmental variables and phylum level community in samples from wetland and meadow areas. There were 15 environmental variables, including seven general physiological (TOC, TN, pH, SWC, and soil texture) and eight heavy metal (Ni, V, Co, Cr, Cd, Pb, Cu, and Zn) concentrations. TOC = total organic carbon; TN = dissolved total N; SWC = soil water content. The length of each arrow indicates the contribution of the corresponding parameter to the structural variation"

Table S1

Diversity indices used in this study"

Ecotype Sample OTU ACE Chao1 Simpson Shannon
Wetland WA 1,574 1,695.227 1,736.489 0.005077 6.224894
WB 1,263 1,393.692 1,412.309 0.011911 5.747849
WC 1,102 1,264.734 1,307.554 0.006491 5.791363
Meadow MA 1,379 1,531.274 1,531.274 0.014792 5.666308
MB 1,356 1,502.562 1,514.474 0.014312 5.627286
MC 1,258 1,435.597 1,473.981 0.008527 5.794125

Table S2

Correlation matrix for the OUT in different QTH/QTR distance"

MA/WA MB/WB MC/WC MCK/WCK
MA/WA 0.034895 0.014613 0.328403
MB/WB 0.152504 0.252389
MC/WC 0.060061
MCK/WCK

Table S3

Soil physicochemical properties"

Sample ID H2O (%) Sand (%) Silt (%) Clay (%) TN (g/kg) TOC (g/kg) pH
WA1 9.86 3.0 61 36.0 1.84 4.85 8.54
WA2 4.39 4.0 49 47.0 1.03 3.72 8.54
WA3 7.29 5.0 46 49.0 1.07 5.04 8.40
WB1 28.14 5.0 47 48.0 2.22 18.35 8.10
WB2 36.99 10.0 52 38.0 2.31 24.25 8.33
WB3 24.04 4.0 62 34.0 2.32 14.98 8.16
WC1 24.89 9.0 51 40.0 1.97 13.75 8.24
WC2 15.06 6.0 38 56.0 0.68 6.44 8.70
WC3 20.34 7.0 29 64.0 1.03 8.29 8.15
MA1 1.39 4.0 50 46.0 0.76 4.99 8.43
MA2 1.14 5.5 33 61.5 1.07 5.89 8.36
MA3 1.73 5.5 47 47.5 0.79 6.35 8.26
MB1 1.65 7.0 48 45.0 0.78 4.45 8.37
MB2 0.64 9.0 39 52.0 1.31 4.38 8.34
MB3 1.05 11.0 41.5 49.0 1.05 4.89 8.18
MC1 11.63 5.0 47 48.0 0.70 2.29 8.54
MC2 9.37 4.0 44 52.0 0.67 1.64 8.55
MC3 12.80 2.5 41.5 56.0 0.90 2.94 8.30

Figure S1

(a) Indicator microbial groups in alpine wetland and meadow areas with LDA score higher than 4. (b) Histogram of the significant difference taxa relative abundances in family level are differential. Wetland and meadow samples are colored with different background. The Alpine wetland was colored with blue and meadow was colored with yellow. Subclasses (distance from QTR) are separated by a black column and the mean and median of relative abundance by solid and dashed lines, respectively"

An ZS , Kutzbach JE , Prell WL , et al. , 2001. Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times. Nature, 411: 62-66. DOI: 10.1038/35075035 .
doi: 10.1038/35075035
Baath E , 1989. Effects of heavy-metals in soil on microbial processes and populations (a review). Water Air and Soil Pollution, 47: 335-379. DOI: 10.1007/BF00279331 .
doi: 10.1007/BF00279331
Baldani JI, Videira SS , dos Santos Teixeira KR , et al. , 2014. The family rhodospirillaceae, the Prokaryotes. Springer, pp. 533-618. DOI: 10.1007/978-3-642-30197-1_300 .
doi: 10.1007/978-3-642-30197-1_300
Baltrenas P , Vaitiekunas P , Baciulyte Z , 2009. Investigation of soil's contamination with heavy metals by railway transport. Journal of Environmental Engineering and Landscape Management, 17: 244-251.
Bardgett RD , Shine A , 1999. Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biology and Biochemistry, 31: 317-321. DOI: 10.1016/S0038-0717(98)00121-7 .
doi: 10.1016/S0038-0717(98)00121-7
Bartram AK , Lynch MDJ , Stearns JC , et al. , 2011. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end illumina reads. Applied and Environmental Microbilogy, 77: 3846-3852. DOI: 10.1128/AEM.02772-10 .
doi: 10.1128/AEM.02772-10
Belyaeva ON , Haynes RJ , Birukova OA , 2005. Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper. Biology and Fertility of Soils, 41: 85-94. DOI: 10.1007/s00374-004-0820-9 .
doi: 10.1007/s00374-004-0820-9
Blake L , Goulding KWT , 2002. Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant Soil, 240: 235-251. DOI: 10.1023/a:1015731530498 .
doi: 10.1023/a:1015731530498
Bremner J , 1960. Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science, 55: 11-33. DOI: 10.1017/S0021859600021572 .
doi: 10.1017/S0021859600021572
Brookes PC , 1995. The use of microbial parameters in monitoring soil pollution by heavy-metals. Biology and Fertility of Soils, 19: 269-279. DOI: 10.1007/bf00336094 .
doi: 10.1007/bf00336094
CEPA , 1995. Chinese Environmental Protection Administration. Beijing.
Chen LT , Wu RG , 2000. Interannual and decadal variations of snow cover over Qinghai-Xizang Plateau and their relationships to summer monsoon rainfall in China. Advances in Atmospheric Sciences, 17: 18-30. DOI: 10.1007/s00376-000-0040-7 .
doi: 10.1007/s00376-000-0040-7
Chu HY , Fierer N , Lauber CL , et al. , 2010. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology, 12: 2998-3006. DOI: 10.1111/j.1462-2920.2010.02277.x .
doi: 10.1111/j.1462-2920.2010.02277.x
Dai J , Becquer T , Rouiller JH , et al. , 2004. Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Applied Soil Ecology, 25: 99-109. DOI: 10.1016/j.apsoil.2003.09.003 .
doi: 10.1016/j.apsoil.2003.09.003
Ding M , Zhang Y , Shen Z , et al. , 2006. Land cover change along the Qinghai-Tibet Highway and Railway from 1981 to 2001. Journal of Geographical Sciences, 16: 387-395. DOI: 10.1007/s11442-006-0401-y .
doi: 10.1007/s11442-006-0401-y
Edgar RC , Haas BJ , Clemente JC , et al. , 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27: 2194-2200. DOI: 10.1093/bioinformatics/btr381 .
doi: 10.1093/bioinformatics/btr381
Fierer N , Jackson RB , 2006. The diversity and biogeography of soil bacterial communities. Proceeding of the National Academy of Sciences of the United States of America, 103: 626-631.
Gao QZ , Li Y , Wan YF , et al. , 2009. Dynamics of alpine grassland NPP and its response to climate change in Northern Tibet. Climatic Change, 97: 515-528. DOI: 10.1007/s10584-009-9617-z .
doi: 10.1007/s10584-009-9617-z
Giller KE, Witter E , McGrath SP , 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology and Biochemistry, 30: 1389-1414. DOI: 10.1016/s0038-0717(97)00270-8 .
doi: 10.1016/s0038-0717(97)00270-8
He HY , Mcginnis JW , Song ZS , et al. , 1987. Onset of the Asian Summer Monsoon in 1979 and the effect of the Tibetan Plateau. Monthly Weather Review, 115: 1966-1995.
Hiraishi A , Sugiyama J , Shin YK , 1995. Brachymonas denitrificans gen. nov., sp. nov., an aerobic chemoorganotrophic bacterium which contains rhodoquinones, and evolutionary relationships of rhodoquinone producers to bacterial species with various quinone classes. The Journal of General and Applied Microbiology, 41: 99-117. DOI: 10.2323/jgam.41.99 .
doi: 10.2323/jgam.41.99
Ho YB , Tai KM , 1988. Elevated levels of lead and other metals in roadside soil and grass and their use to monitor aerial metal depositions in Hong-Kong. Environmental Pollution, 49: 37-51. DOI: 10.1016/0269-7491(88)90012-7 .
doi: 10.1016/0269-7491(88)90012-7
Huang B , Kuo S , Bembenek R , 2004. Availability of cadmium in some phosphorus fertilizers to field-grown lettuce. Water Air and Soil Pollution, 158: 37-51. DOI: 10.1023/b:wate. 0000044832.04770.41 .
doi: 10.1023/b:wate. 0000044832.04770.41
Jiang XT , Peng X , Deng GH , et al. , 2013. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microbial Ecology, 66: 96-104. DOI: 10.1007/s00248-013-0238-8 .
doi: 10.1007/s00248-013-0238-8
Jin HJ , Yu QH , Wang SL , et al. , 2008. Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate warming. Cold Regions Science and Technology, 53: 317-333. DOI: 10.1016/j.coldregions.2007.07.005 .
doi: 10.1016/j.coldregions.2007.07.005
Kalembasa SJ , Jenkinson DS , 1973. A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. Journal of the Science of Food and Agriculture, 24: 1085-1090. DOI: 10.1002/jsfa.2740240910 .
doi: 10.1002/jsfa.2740240910
Khan MN , Wasim AA , Sarwar A , et al. , 2011. Assessment of heavy metal toxicants in the roadside soil along the N-5, National Highway, Pakistan. Environmental Monitoring and Assessment, 182: 587-595. DOI: 10.1007/s10661-011-1899-8 .
doi: 10.1007/s10661-011-1899-8
Koeleman M , Laak WJV , Ietswaart H , 1999. Dispersion of PAH and heavy metals along motorways in the Netherlands -an overview. Science of the Total Environment, 235: 347-349. DOI: 10.1016/s0048-9697(99)00253-3 .
doi: 10.1016/s0048-9697(99)00253-3
Kou Y , Li J , Wang Y , et al. , 2017. Scale-dependent key drivers controlling methane oxidation potential in Chinese grassland soils. Soil Biology and Biochemistry, 111: 104-114. DOI: 10.1016/j.soilbio.2017.04.005 .
doi: 10.1016/j.soilbio.2017.04.005
Lauber CL , Hamady M , Knight R , et al. , 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75: 5111-5120. DOI: 10. 1128/AEM.00335-09 .
doi: 10. 1128/AEM.00335-09
Leta S , Gumaelius L , Assefa F , et al. , 2004. Identification of efficient denitrifying bacteria from tannery wastewaters in Ethiopia and a study of the effects of chromium III and sulphide on their denitrification rate. World Journal of Microbiology and Biotechnology, 20: 405-411. DOI: 10.1023/b:wibi.0000033069.24982.6e .
doi: 10.1023/b:wibi.0000033069.24982.6e
Li FR , Kang LF , Gao XQ , et al. , 2007. Traffic-related heavy metal accumulation in soils and plants in northwest China. Soil and Sediment Contamination, 16: 473-484. DOI: 10.1080/15320380701490168 .
doi: 10.1080/15320380701490168
Li ZY , Ma ZW , van der Kuijp TJ , et al. , 2014. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468: 843-853. DOI: 10.1016/j.scitotenv.2013.08.090 .
doi: 10.1016/j.scitotenv.2013.08.090
Liu H , Chen LP , Ai YW , et al. , 2009. Heavy metal contamination in soil alongside mountain railway in Sichuan, China. Environmental Monitoring and Assessment, 152: 25-33. DOI: 10.1007/s10661-008-0293-7 .
doi: 10.1007/s10661-008-0293-7
Lorenzo R , Kaegi R , Gehrig R , et al. , 2006. Particle emissions of a railway line determined by detailed single particle analysis. Atmospheric Environment, 40: 7831-7841. DOI: 10.1016/j.atmosenv.2006.07.026 .
doi: 10.1016/j.atmosenv.2006.07.026
Malawska M , Wiolkomirski B , 2001. An analysis of soil and plant (Taraxacum officinale) contamination with heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the area of the railway junction Ilawa Glowna, Poland. Water Air and Soil Pollution, 127: 339-349. DOI: 10.1023/A:1005236016074 .
doi: 10.1023/A:1005236016074
Marschner P , Yang CH , Lieberei R , et al. , 2001. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry, 33: 1437-1445. DOI: 10.1016/s0038-0717(01)00052-9 .
doi: 10.1016/s0038-0717(01)00052-9
Monrozier LJ , Ladd J , Fitzpatrick RW , et al. , 1991. Components and microbial biomass content of size fractions in soils of contrasting aggregation. Geoderma, 50: 37-62. DOI: 10.1016/0016-7061(91)90025-O .
doi: 10.1016/0016-7061(91)90025-O
Motto HL , Daines RH , Chilko DM , et al. , 1970. Lead in soils and plants - its relationship to traffic volume and prximity to highways. Environmental Science and Technology, 4: 231. DOI: 10.1021/es60038a009 .
doi: 10.1021/es60038a009
Nagajyoti PC , Lee KD , Sreekanth TVM , 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8: 199-216. DOI: 10.1007/s10311-010-0297-8 .
doi: 10.1007/s10311-010-0297-8
Nannipieri P , Badalucco L , 2003. Biological processes. In: Benbi D, Nieder R eds.). Handbook of Processes and Modelling in the Soil-Plant System. Binghamtom: Haworth Press, pp. 57-82.
Ozcan MM , Juhaimi FY AL , 2012. Determination of heavy metals in bee honey with connected and not connected metal wires using inductively coupled plasma atomic emission spectrometry (ICP-AES). Environmental Monitoring and Assessment, 184: 2373-2375. DOI: 10.1007/s10661-011-2123-6 .
doi: 10.1007/s10661-011-2123-6
Pagotto C , Remy N , Legret M , et al. , 2001. Heavy metal pollution of road dust and roadside soil near a major rural highway. Environmental Technology, 22: 307-319. DOI: 10. 1080/09593332208618280 .
doi: 10. 1080/09593332208618280
Qiu G , 1980. Problems in permafrost engineering geological survey in the western mountain and plateau areas. Journal of Glaciology and Geocryology, 2: 17-23.
Qiu HD , Xu SN , Zhu H , et al. , 2002. The influence of salt-resistant Rhodospirillaceae bacteria on the water quality and bacterial population in the freshwater fish-ponds. Journal of Fisheries of China, 26(3): 006. DOI: 10.1007/s11769-002-0026-8 .
doi: 10.1007/s11769-002-0026-8
Qiu J , 2008. The third pole. Nature, 454: 393-396.
Rayment G , Higginson FR , 1992. Australian Laboratory Handbook of Soil and Water Chemical Methods. Inkata Press Pty Ltd.
Ritz K , Black HIJ , Campbell CD , et al. , 2009. Selecting biological indicators for monitoring soils: a framework for balancing scientific and technical opinion to assist policy development. Ecological Indicators, 9: 1212-1221. DOI: 10.1016/j.ecolind.2009.02.009 .
doi: 10.1016/j.ecolind.2009.02.009
Schloter M , Dilly O , Munch JC , 2003. Indicators for evaluating soil quality. Agriculture, Ecosystems & Environment, 98: 255-262.
Schmidt MWI , Torn MS , Abiven S , et al. , 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478: 49-56. DOI: 10.1038/nature10386 .
doi: 10.1038/nature10386
Schuur EAG , Abbott B , Network PC , 2011. High risk of permafrost thaw. Nature, 480: 32-33. DOI: 10.1038/480032a .
doi: 10.1038/480032a
Shacklette HT , Boerngen J , 1984. Element concentrations in soils and other surficial materials of the conterminous United States. Geological Survey Circular, 1270.
Shang QH , Yang G , Wang Y , et al. , 2016. Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field. World Journal of Microbiology and Biotechnology, 32: 95. DOI: 10.1007/s11274-016-2051-2 .
doi: 10.1007/s11274-016-2051-2
Stephan A , Meyer AH , Schmid B , 2000. Plant diversity affects culturable soil bacteria in experimental grassland communities. Journal of Ecology, 88: 988-998. DOI: 10.1046/j.1365-2745.2000.00510.x .
doi: 10.1046/j.1365-2745.2000.00510.x
Suner MA, Devesa V , Munoz O , et al. , 1999. Total and inorganic arsenic in the fauna of the Guadalquivir estuary: environmental and human health implications. Science of the Total Environment, 242: 261-270. DOI: 10.1016/s0048-9697(99)00399-x .
doi: 10.1016/s0048-9697(99)00399-x
Taylor SR , Mclennan SM , 1995. The geochemical evolution of the continental-crust. Reviews of Geophysics, 33: 241-265. DOI: 10.1029/95rg00262 .
doi: 10.1029/95rg00262
Tilman D , Reich PB , Knops J , et al. , 2001. Diversity and productivity in a long-term grassland experiment. Science, 294: 843-845. DOI: 10.1126/science.1060391 .
doi: 10.1126/science.1060391
Wang F , Yao J , Si Y , et al. , 2010. Short-time effect of heavy metals upon microbial community activity. Journal of Hazardous Materials, 173: 510-516. DOI: 10.1016/j.jhazmat. 2009.08.114 .
doi: 10.1016/j.jhazmat. 2009.08.114
Wardle DA , Bonner KI , Barker GM , et al. , 1999. Plant removals in perennial grassland: Vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecological Monographs, 69: 535-568. DOI: 10.2307/2657230 .
doi: 10.2307/2657230
Willems A , 2014. The family comamonadaceae. The Prokaryotes, 777-851. DOI: 10.1007/978-3-642-30197-1_238 .
doi: 10.1007/978-3-642-30197-1_238
Wu GX , Liu YM , Wang TM , et al. , 2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology, 8: 770-789. DOI: 10.1175/JHM609.1 .
doi: 10.1175/JHM609.1
Wu Q , Shi B , 2002. Discussion on the environmental protection of frozen soil during the Qinghai-Tibet railway construction. Hydrological Geology and Engineering Geology, 4: 14-20. DOI: 10.1007/s11769-002-0037-5 .
doi: 10.1007/s11769-002-0037-5
Wu QB , Zhang TJ , 2008. Recent permafrost warming on the Qinghai-Tibetan plateau. Journal of Geophysical Research-Atmospheres, 113. DOI: 10.1029/2007JD009539 .
doi: 10.1029/2007JD009539
Xiong JB , Liu YQ , Lin XG , et al. , 2012. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental Microbiology, 14: 2457-2466. DOI: 10.1111/j.1462-2920.2012.02799.x .
doi: 10.1111/j.1462-2920.2012.02799.x
Yang YG , Campbell CD , Clark L , et al. , 2006. Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere, 63: 1942-1952. DOI: 10.1016/j.chemosphere.2005.10.009 .
doi: 10.1016/j.chemosphere.2005.10.009
Zak DR , Holmes WE , White DC , et al. , 2003. Plant diversity,soil microbial communities,and ecosystem function: are there any links?. Ecology, 84: 2042-2050. DOI: 10.1890/02-0433 .
doi: 10.1890/02-0433
Zhang H , Wang ZF , Zhang YL , et al. , 2012. The effects of the Qinghai-Tibet railway on heavy metals enrichment in soils. Science of the Total Environment, 439: 240-248. DOI: 10.1016/j.scitotenv.2012.09.027 .
doi: 10.1016/j.scitotenv.2012.09.027
Zhang TJ , 2005. Historical overview of permafrost studies in China. Physical Geography, 26: 279-298. DOI: 10.2747/0272-3646.26.4.279 .
doi: 10.2747/0272-3646.26.4.279
Zhang XP , 1994. Research on the environmental background values of soils in Xizang. Scientia Geographica Sinica, 14(1): 49-55.
[1] Yan Xie,Jun Wen,Rong Liu,Xin Wang,DongYu Jia. Analysis of water vapour flux between alpine wetlands underlying surface and atmosphere in the source region of the Yellow River [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 305-316.
[2] YiGang Hu, ZhenHua Zhang, ShiPing Wang, ZhiShan Zhang, Yang Zhao, ZengRu Wang. The weak effects of fencing on ecosystem respiration, CH4, and N2O fluxes in a Tibetan alpine meadow during the growing season [J]. Sciences in Cold and Arid Regions, 2017, 9(6): 554-567.
[3] Ajigul Mamut, Mamattursun Eziz, Anwar Mohammad, Mattohti Anayit, Atiyagul Rixit. Contamination and risk assessment of heavy metals in farmland soils of Baghrash County, Xinjiang, Northwest China [J]. Sciences in Cold and Arid Regions, 2017, 9(5): 467-475.
[4] HaiBo Wang, MingGuo Ma. Comparing the seasonal variation of parameter estimation of ecosystem carbon exchange between alpine meadow and cropland in Heihe River Basin, northwestern China [J]. Sciences in Cold and Arid Regions, 2015, 7(3): 216-228.
[5] Emmanuel F. Isola, Olusanya A. Olatunji, Akinjide M. Afolabi, Ademayowa A. Omodara. Heavy metal accumulation in the above-ground vegetation and soil around an iron smelting factory in Ile-Ife, southwestern Nigeria [J]. Sciences in Cold and Arid Regions, 2015, 7(2): 121-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!