Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (2): 126-138.doi: 10.3724/SP.J.1226.2019.00126.

Previous Articles    

Holocene climatic change reconstructed from trace elements of an aeolian deposit in the southeastern Mu Us Desert, northern China

Bing Liu1,2(),HeLing Jin1,LiangYing Sun1,WenPing Xue1,ZhenYu Liu1   

  1. 1. Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2. MOE Key Laboratory of Western China Environmental System, Lanzhou University, Lanzhou, Gansu 730000, China
  • Received:2018-12-10 Accepted:2019-01-22 Online:2019-04-01 Published:2019-04-29
  • Contact: Bing Liu E-mail:liubing2014@lzb.ac.cn
  • About author:Bing Liu, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences. No. 320, West Donggang Road, Lanzhou, Gansu 730000, China. E-mail: liubing2014@lzb.ac.cn

Abstract:

In semi-arid and arid desert regions of northern China, aeolian deposits document the framework variation of an Asian monsoon during the late Quaternary. However, there is still a lack of detailed data pertaining to Holocene Asian monsoonal variation especial in the modern Asian summer monsoonal boundary belt. In this study, we reconstructed Holocene millennial-scale climatic changes in the Mu Us Desert, northern China, through systematic analysis of the variation of trace elements (324 samples) in different lithological units of the palaeosol-aeolian sand deposit, in combination with 14C and OSL chronology. Statistical results, correlation and clustering analysis indicate that the high content of 11 trace elements (V, Y, Cr, Nb, P, Mn, Cu, Zr, As, Ni and Rb, represented by P) and lower Sr content corresponding to periods of palaeosol development, marked increase of vegetation, weathering degree, and enhanced Asian summer monsoonal strength. In contrast, their opposed variation are coincident with accumulated aeolian sand layers, implying weaker summer monsoons and less geochemical weathering and degraded vegetation. These associations can be considered as signaling regional humid and dry changes of the Holocene environment. Accordingly, relatively arid conditions dominated the region before 7.2 ka, and there was an optimal humid climate in 7.2?4.6 ka. Afterwards, the climate became obviously dry, accompanied with several cycles of relatively wet and dry, such as relatively wet intervals around 4.1?3.7 ka, 3.5?3.3 ka and 2.5 ka. In addition, six millennial-scale dry events were recorded, and these events were consistent with weaker Asian summer monsoonal intervals in low latitudes, declined palaeosol development and precipitation in middle latitudes, as well as increased winter monsoon and periodic ice-rafting events in high latitudes of the Northern Hemisphere, within limits of accuracy of existing dating ages. This possibly suggests a noteworthy synchronism between millennial-scale climatic changes in this region and on a global scale.

Key words: Holocene climatic change, Mu Us Desert, Aeolian deposit, trace element, synchronism

Figure 1

Location of the study area. (a) The Mu Us Desert (black); dashed line shows the present limit of the Asian summer monsoon influence. Arrows denote: 1, westerlies; 2, winter monsoon; 3, southwest monsoon; 4, southeast monsoon. (b) Remote-sensing image of the Mu Us Desert and the JJ profile (white triangle)"

Figure 2

Lithostratigraphic variation (a) and OSL and conventional 14C dating (b) of the JJ profile"

Figure 3

Variation of trace elements and indicated climate change in the JJ profile, southeastern Mu Us Desert"

Table 1

Statistical analysis of trace element contents in the different lithologies of the JJ profile"

JJ profile Palaeosol Aeolian sand Weakly developed palaeosol
Range Average Range Average Range Average Range Average
P 219.66?410.82 286.18 256.82?382.54 307.17 219.66?332.03 258.19 271.01?410.82 333.11
V 9.08?37.14 22.51 36.85?16.59 24.28 9.08?33.54 19.74 21.64?37.14 29.83
Cr 10.58?32.68 20.11 13.62?32.68 21.63 10.58?31.93 17.80 19.10?30.75 25.57
Mn 87.64?299.43 181.92 137.63?299.43 204.85 87.64?241.78 154.26 163.64?258.24 212.46
Ni 13.17?21.54 16.91 13.75?21.54 17.36 13.17?20.73 16.50 13.96?19.23 16.62
Cu 4.01?10.99 6.60 4.45?10.99 7.38 4.01?8.20 5.71 5.57?8.99 7.27
As 2.73?6.01 4.27 3.32?6.01 4.45 2.73?5.57 4.06 3.54?5.43 4.40
Rb 76.55?86.66 80.07 78.18?86.66 81.70 76.55?81.42 78.56 77.86?80.00 79.00
Sr 293.81?373.07 331.88 293.81?357.13 320.73 315.42?373.07 344.32 300.31?347.28 324.29
Y 5.64?13.21 8.97 7.10?13.21 9.58 5.64?11.55 8.11 8.16?13.11 10.65
Zr 6.144?188.20 111.56 87.22?182.22 111.24 61.44?180.99 107.01 113.70?188.20 146.44
Nb 2.83?8.36 4.50 3.90?7.72 5.23 2.83?7.20 4.58 4.71?8.36 6.23
Ba 796.47?980.90 911.13 796.47?940.97 903.07 826.20?980.90 925.77 799.27?917.37 865.29

Figure 4

Cluster analysis of trace elements in the JJ profile, southeastern Mu Us Desert"

Table 2

Correlation coefficients of trace elements in the JJ profile"

P V Cr Mn Ni Cu As Rb Sr Y Zr Nb Ba
P 1 0.858** 0.902** 0.934** 0.550** 0.882** 0.589** 0.655** -0.873** 0.895** 0.524** 0.781** -0.738**
V 1 0.941** 0.864** 0.533** 0.713** 0.674** 0.324** -0.772** 0.953** 0.932** 0.929** -0.909**
Cr 1 0.893** 0.554** 0.776** 0.620** 0.418** -0.774** 0.941** 0.751** 0.891** -0.850**
Mn 1 0.596** 0.902** 0.630** 0.665** -0.839** 0.915** 0.540** 0.787** -0.698**
Ni 1 0.580** 0.584** 0.379** -0.540** 0.553** 0.350** 0.509** -0.420**
Cu 1 0.527** 0.750** -0.843** 0.784** 0.323** 0.627** -0.550**
As 1 0.375** -0.561** 0.643** 0.478** 0.589** -0.552**
Rb 1 -0.780** 0.429** -0.170** 0.209** -0.119*
Sr 1 -0.781** -0.341** -0.627** 0.620**
Y 1 0.770** 0.909** 0.878**
Zr 1 0.868** -0.885**
Nb 1 -0.898**
Ba 1

Figure 5

Relationships of trace elements with CIA, OM, <4-μm, and ? 63-μm content in the JJ profile"

Figure 6

Holocene aeolian activity and palaeosol development in the Mu Us Desert, the OSL ages were collected from published literatures and this study (Lu et al., 2005, 2013; Sun et al., 2006; Li et al., 2007; Zhou et al., 2009; Ma et al., 2011; Jia et al., 2015; Zhao et al., 2016)"

Figure 7

Comparison of Holocene millennial-scale dry events between Mu Us Desert and different archives from the low, middle, and high latitudes of the Northern Hemisphere. (a) Solar total radiation (TSI, Steinhilber et al., 2012); (b) Temperature change in the western tropical Paci?c Ocean in the Holocene epoch (Stott et al., 2004); (c) Variation of the Asian Summer monsoonal strength from center China (Hu et al., 2008); (d) Probability density distribution of the Holocene palaeosol in Loess Plateau (Wang et al., 2014); (e) Precipitation change in Qigainor Lake (Sun and Feng, 2013); (f) Precipitation change in Daihai Lake (Xu et al., 2003); (g) Precipitation change in Gonghai Lake (Chen et al., 2015); (h) Variation of the P content in the JJ profile (this study), its increased content denoted enhanced Asian summer monsoonal strength; (i) Variation of the Sr content in the JJ profile (this study), its decreased content marked declined summer monsoonal intensity and relatively dry circumstances; (j) Ice rafting debris (IRD) events of the North Atlantic Ocean (Bond et al., 2001); (k) K+ concentration in the GISP2 (Mayewski et al., 1997)"

An ZS, 2000. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews, 191: 171−187. DOI: 10.1016/S0277-3791(99)00060-8.
doi: 10.1016/S0277-3791(99)00060-8
Bianchi GG , McCave IN , 1999. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature, 397: 513−515. DOI: 10.1038/17362.
doi: 10.1038/17362
Bond G , Kromer B , Beer J , et al . , 2001. Persistent solar influence on north Atlantic climate during the Holocene. Science, 294: 2130−2136. DOI: 10.1126/science.1065680.
doi: 10.1126/science.1065680
Chen FH , Xu QH , Chen JH , et al . , 2015. East Asian summer monsoon precipitation variability since the last deglaciation. Scientific Reports, 5: 11186. DOI: 10.1038/srep11186.
doi: 10.1038/srep11186
Chen FH , Zhu Y , Li JJ , et al . , 2001. Abrupt Holocene changes of the Asian monsoon at millennial-and centennial-scales: Evidence from lake sediment document in Minqin Basin, north China. Chinese Science Bulletin, 46: 1942−1947. DOI: 10.1007/BF02901902.
doi: 10.1007/BF02901902
Chen J , An ZS , Wang YJ , et al . , 1999, Distribution of Rb and Sr in the Luochuan loess-paleosol sequence of China during the last 800 ka: Implications for paleomonsoon variations. Science in China: (Series D), 42(3): 225−232. DOI: 10.1007/BF02878959.
doi: 10.1007/BF02878959
Chen WN , Gao SY , Shao YJ , et al . , 1994. Holocene pollen assemblage and climatic change in the Mu Us sand sea. Journal of Chinese Historical Geography, 1: 39−54. DOI: https://doi.org/10.1007/BF02878959.
doi: 10.1007/BF02878959
Chen WN , Gao SY , Sun Z , 1993. On the Holocene geochemical landscape characteristics and its palaeoclimatic meaning, Mu Us sand sea. Journal of Desert Research, 14(1): 22−30. (in Chinese)
Dong GR , Gao SY , Jin J , 1993. Desertification and Its Control in Gonghe Basin of Qinghai Province. Beijing,China: Science Press. (in Chinese)
Du SH , Li BS , Chen MH , et al . , 2012. Kiloyear-scale climate events and evolution during the Last Interglacial, Mu Us Desert, China. Quaternary International, 263: 63−70. DOI: 10.1016/j.quaint.2012.01.004.
doi: 10.1016/j.quaint.2012.01.004
Gao SY , Cheng WN , Jin HL , et al . , 1993. Preliminary study on the desert changes at the northwest edge of China. Science in China (Series B), 23(2): 203−208. (in Chinese)
Guo LL , Feng ZD , Li XQ , et al . , 2007. Holocene climatic and environmental changes recorded in BaaharNuur Lake core in the Ordos Plateau, Inner Mongolia of China. Chinese Science Bulletin, 52(7): 959−966. DOI: 982006-1191.
doi: 982006-1191
Guo ZT , Nicole PM , Kropelin S , 2000. Holocene non-orbital climatic events in present-day arid area of northern Africa and China. Global and Planetary Change, 26: 97−103. DOI: 10.1016/S0921-8181(00)00037-0.
doi: 10.1016/S0921-8181(00)00037-0
Gupta AK , Anderson DM , Overpeck JT , 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the Atlantic Ocean. Nature, 421: 354−357. DOI: https://doi.org/10.1038/nature01340.
doi: 10.1038/nature01340
Hong YT , Hong B , Lin QH , et al . , 2003. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth and Planetary Science Letters, 211: 371−380. DOI: 10.1016/s0012-821x(03)00207-3.
doi: 10.1016/s0012-821x(03)00207-3
Hu CY , Henderson GM , Huang J , et al . , 2008. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth and Planetary Science Letters, 266: 221−232. DOI: 10.1016/j.epsl.2007.10.015.
doi: 10.1016/j.epsl.2007.10.015
Huang CQ , Feng ZD , Ma YZ , et al . , 2009. Holocene palaeoenvironmental changes recorded by pollen of the BaharNuur Lake. Journal of Lanzhou University (Natural Sciences), 45(4): 7−12. DOI: 10.1016/j.epsl.2007.10.015. (in Chinese)
doi: 10.1016/j.epsl.2007.10.015
Huang F , Lisa K , Xiong SF , et al . , 2004. Holocene grassland vegetation, climate and human impact in central eastern Inner Mongolia. Science in China (Series D), 48(7): 1025−1039. DOI: 10.1360/03yd0165.
doi: 10.1360/03yd0165
Jia FF , Lu RJ , Gao SY , et al . , 2015. Holocene aeolian activities in the southeastern Mu Us Desert, China. Aeolian Research, 19: 267−274. DOI: 10.1016/j.aeolia.2015.01.002.
doi: 10.1016/j.aeolia.2015.01.002
Jin HL , Dong GR , Su ZZ , et al . , 2001. Reconstruction of the spatial patterns of desert/loess boundary belt in north China during the Holocene. Chinese Science Bulletin, 12: 969−974. DOI: 10.1007/BF03183538.
doi: 10.1007/BF03183538
Jin HL , Sun LY , Sun Z , 2010. Millennial-scale evolution of Hunshandake Desert and climate change during the Holocene in Inner Mongolia, northern China. Sciences in Cold and Arid Regions, 2(6): 505−513. DOI: 10.3724/SP.J. 1226.2010.00505.
doi: 10.3724/SP.J. 1226.2010.00505
Li XQ , Zhou WJ , An ZS , et al . , 2003. The vegetation and monsoon variations at the desert-loess transition belt at Midiwan in northern China for the last 13 ka. The Holocene, 13: 779−784. DOI: 10.1191/0959683603hl664rr.
doi: 10.1191/0959683603hl664rr
Li ZP , Yue LP , Guo L , et al . , 2007. Holocene climatic change and desertification in northern China. Northwest Geology, 40(3): 1−29. (in Chinese)
Linsley BK, 1996. Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past 150,000 years. Nature, 380: 234−237. DOI: 10.1038/380234a0.
doi: 10.1038/380234a0
Liu B , Jin HL , Sun Z , et al . , 2014a. Evidence of Holocene millennial-scale climatic change from Gonghe Basin peat deposit, northeastern Qinghai-Tibet Plateau. Journal of Arid Environments, 106: 1−10. DOI: 10.1016/j.jaridenv. 2014. 03.003.
doi: 10.1016/j.jaridenv. 2014. 03.003
Liu B , Jin HL , Sun LY , et al . , 2014b. Holocene moisture change revealed by the Rb/Sr ratio of aeolian deposits in the southeastern Mu Us Desert, China. Aeolian Research, 13: 109−119. DOI: 10.1016/j.aeolia.2014.03.006.
doi: 10.1016/j.aeolia.2014.03.006
Liu B , Jin HL , Sun LY , et al . , 2016. Geochemical characteristics of Holocene aeolian deposits and their environmental significance in the Mu Us Desert, northern China. Geological Journal, 51: 325−337. DOI: 10.1002/gj.2630.
doi: 10.1002/gj.2630
Liu B , Jin HL , Sun Z , et al . , 2012. Geochemical evidences of dry climate in the Mid-Holocene in Gonghe Basin, northeastern Qinghai-Tibetan Plateau. Sciences in Cold and Arid Regions, 4(6): 483−494. DOI: 10.3724/SP.J.1226. 2012. 00472.
doi: 10.3724/SP.J.1226. 2012. 00472
Liu K , Lai ZP , 2012. Chronology of Holocene sediments from the archaeological Salawusu site in the Mu Us Desert in China and its palaeoenvironmental implications. Journal of Asian Earth Sciences, 45: 247−255. DOI: 10.1016/j.jseaes. 2011.11.002.
doi: 10.1016/j.jseaes. 2011.11.002
Lu H , Miao X , Zhou Y , et al . , 2005. Late Quaternary aeolian activity in the Mu Us and Otindag dunefields (north China) and lagged response to insolation forcing. Geophysical Research Letters, 32: L21716. DOI: 10.1029/2005gl024560.
doi: 10.1029/2005gl024560
Lu HY , Yi SW , Xu ZW , et al . , 2013. Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum. Chinese Science Bulletin, 58(23): 2775−2783. DOI: 10. 1007/s11434-013-5919-7.
doi: 10. 1007/s11434-013-5919-7
Lu YX , Li BS , Wen XH , et al . , 2010. Millennial-centennial scales climate changes of holocene indicated by magnetic susceptibility of high-resolution section in Salawusu River Valley, China. Chinese Geographical Science, 20(3): 243−251. DOI: 10.1007/s11769-010-0243-5.
doi: 10.1007/s11769-010-0243-5
Ma J , Yue LP , Yang LR , et al . , 2011. OSL dating of Holocene sequence and palaeoclimate change record in southeastern margin of Mu us desert, north China. Quaternary Sciences, 31(1): 120−129. DOI: 10.3969/j.issn.1001-7410.2011. 01.16. (in Chinese)
doi: 10.3969/j.issn.1001-7410.2011. 01.16
Mason JA , Lu H , Zhou Y , et al . , 2009. Dune mobility and aridity at the desert margin of northern China at a time of peak monsoon strength. Geology, 37(10): 947−950. DOI: 10.1 130/g30240a.1.
doi: 10.1 130/g30240a.1
Mayewski PA , Meeker LD , Twickler MS , et al . , 1997. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. Journal of Geophysical Research, 102(12): 26345−26366. DOI: https://doi.org/10.1029/96JC03365.
doi: 10.1029/96JC03365
McLennan SM, 1993. Weathering and global denudation. Journal of Geology, 101: 295−303. DOI: 10.1086/648222.
doi: 10.1086/648222
Nesbitt HW , Young GM , 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715−717. DOI: 10.1038/299715a0.
doi: 10.1038/299715a0
Niu DF , Li BS , Wang FN , et al . , 2015. Holocene climate fluctuations from the record of trace elements in the Mu Us Desert: evidence from the DGS 1 SEGMENT OF THE Salawusu river valley. Acta Sedimentological Sinica, 33(4): 735−743. (in Chinese)
Niu DF , Li BS , Du SH , et al . , 2008. Cold events of Holocene indicated by primary elements distribution of the high-resolution sand dunes in the Salawusu River Valley. Journal of Geographical Sciences, 18: 26−36. DOI: 10.1007/s11442-008-0026-4.
doi: 10.1007/s11442-008-0026-4
O'Brien SR , Mayewski PA , Meeker LD , et al . , 1995. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science, 270(5244): 1962−1964. DOI: 10.1126/science.270.5244.1962.
doi: 10.1126/science.270.5244.1962
Overpeck J , Anderson DM , Trumbore S , 1996. The southeast Indian monsoon over the last 18000 years. Climate Dynamics, 12: 213−255. DOI: 10.1007/bf00211619.
doi: 10.1007/bf00211619
Steinhilber F , Abreu JA , Beer J , et al . , 2012. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proceedings of the National Academy of Sciences, 109: 5967−5971. DOI: 10.1073/pnas.1118965109.
doi: 10.1073/pnas.1118965109
Stott L , Cannariato K , Thunell R , et al . , 2004. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature, 431: 56−59. DOI:10.1038/nature02903.
doi: 10.1038/nature02903
Sun AZ , Feng ZD , 2013. Holocene climatic reconstructions from the fossil pollen record at QigaiNuur in the southern Mongolian Plateau. The Holocene, 23(10): 1391−1402. DOI: 10.1177/0959683613489581.
doi: 10.1177/0959683613489581
Sun JM , Li SH , Han P , et al . , 2006. Holocene environment changes in the central inner Monglia, based on the signle-aliquot-quartz optical dating and muti-proxy study of dune sands. Palaeogeography, Palaeoclimatology, Palaeoecology, 233: 51−62. DOI: 10.1016/j.palaeo.2005.09.016.
doi: 10.1016/j.palaeo.2005.09.016
Wang HP , Chen JH , Zhang XJ , et al . , 2014. Palaeosol development in the Chinese Loess Plateau as an indicator of the strength of the East Asian summer monsoon: Evidence for a mid-Holocene maximum. Quaternary International, 334−335: 155−164. DOI: 10.1016/j.quaint.2014.03.013.
doi: 10.1016/j.quaint.2014.03.013
Wang T, 2011. Deserts and Aeolian Desertification in China. Beijing: Science Press, pp. 1−819.
Wang YJ , Cheng H , Edwards RL , et al . , 2005. The Holocene Asian Monsoon: link to solar changes and North Atlantic Climate. Science, 308: 854−857. DOI: 10.1126/science. 1106296.
doi: 10.1126/science. 1106296
Wang YJ , Cheng H , Edwards RL , et al . , 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451: 1090−1093. DOI: 10.1038/nature06692.
doi: 10.1038/nature06692
Wen XH , Li BS , Zheng YM , et al . , 2016. Early Holocene multi-centennial moisture change reconstructed from lithology, grain-size and chemical composition data in the eastern Mu Us desert and potential driving forces. Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 440−452. DOI: 10.10 16/j.palaeo.2016.07.035.
doi: 10.10 16/j.palaeo.2016.07.035
Xiao JL , Xu QH , Nakamura T , et al . , 2004. Holocene vegetation variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon climatic history. Quaternary Science Reviews, 23: 1669−1679. DOI: 10.1016/j.quascirev.2004.01.005.
doi: 10.1016/j.quascirev.2004.01.005
Xu QH , Xiao JL , Nakamura T , et al . , 2003. Quantitative reconstructed climatic changes of Daihai Basin by pollen data. Marine Geology & Quaternary Geology, 23(4): 99−108. DOI: 10.1007/s11769-003-0089-1.
doi: 10.1007/s11769-003-0089-1
Yu YT , Yang TB , Li JJ , et al . , 2006. Millennial-scale Holocene climate variability in the NW China drylands and links to the tropical Pacific and the North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 233: 149−162. DOI: 10.1016/j.palaeo.2005.09.008.
doi: 10.1016/j.palaeo.2005.09.008
Zhao H , Lu YC , Wang CM , et al . , 2010. ReOSL dating of aeolian and fluvial sediments from Nihewan Basin, northern China and its environmental application. Quaternary Geochronology, 5: 159−163. DOI: 10.1016/j.quageo.2009. 03.008.
doi: 10.1016/j.quageo.2009. 03.008
Zhao H , Shen YW , Li B , et al . , 2016. Holocene environment changes around the Sara Us River, northern China, revealed by optical dating of lacustrine−aeolian sediments. Journal of Asian Earth Sciences, 120: 184−191. DOI: 10. 1016/j.jseaes.2016.02.002.
doi: 10. 1016/j.jseaes.2016.02.002
Zhou TR , Zhang LS , 1992. Holocene Environmental Evolution and Prediction in the Farming and Pastoral Transition Belt, Northern China. Beijing: Geological Publishing House. (in Chinese)
Zhou WJ , Dodson J , Head MJ , et al . , 2002b. Environmental variability within the Chinese desert-loess transition zone over the last 20,000 years. The Holocene, 12(1): 107−112. DOI: 10.1191/0959683602hl525rr.
doi: 10.1191/0959683602hl525rr
Zhou WJ , Lu XF , Wu ZK , et al . , 2002a. Peat record reflecting Holocene climatic change in the Zoige Plateau and AMS radiocarbon dating. Chinese Science Bulletin, 47: 66−70. DOI: 10.1360/02tb9013.
doi: 10.1360/02tb9013
Zhou YL , Lu HY , Zhang JF , et al . , 2009. Luminescence dating of sand−loess sequences and response of Mu Us and Otindag sand fields (north China) to climatic changes. Journal of Quaternary Sciences, 24(4): 336−344. DOI: 10.1002/jqs.1234.
doi: 10.1002/jqs.1234
[1] YueFang Li, Zhen Li, Ju Huang, Giulio Cozzi, Clara Turetta, Carlo Barbante, LongFei Xiong. Variations of trace elements and rare earth elements (REEs) treated by two different methods for snow-pit samples on the Qinghai-Tibetan Plateau and their implications [J]. Sciences in Cold and Arid Regions, 2017, 9(6): 568-579.
[2] Bing Liu, HeLing Jin, Fan Yang. A late Holocene winter monsoon record inferred from the palaeo-aeolian sand dune in the southeastern Mu Us Desert, northern China [J]. Sciences in Cold and Arid Regions, 2016, 8(5): 388-399.
[3] Jie Xue, JiaQiang Lei, DongWei Gui, JianPing Zhao, DongLei Mao, Jie Zhou. Synchronism of runoff response to climate change in Kaidu River Basin in Xinjiang, Northwest China [J]. Sciences in Cold and Arid Regions, 2016, 8(1): 82-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!