Sciences in Cold and Arid Regions ›› 2017, Vol. 9 ›› Issue (3): 250-257.doi: 10.3724/SP.J.1226.2017.00250

• ARTICLES • Previous Articles    

Numerical simulation and experimental validation of moisture-heat coupling for saturated frozen soils

ZhiMing Li1,2, Jian Chen1,2, Kai Sun1,2, Bin Zhang3   

  1. 1. Key Lab of Structures Dynamic Behavior and Control (Harbin Institute of Technology), Ministry of Education, Harbin, Heilongjiang 150090, China;
    2. School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China;
    3. Heilongjiang Water Conservancy Science Research Institute, Harbin, Heilongjiang 150080, China
  • Received:2016-11-01 Revised:2016-12-01 Published:2018-11-23
  • Contact: Chen Jian, Jian Chen, Associate Professor, School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. E-mail: chenj77@hit.edu.cn E-mail:chenj77@hit.edu.cn
  • Supported by:
    The financial support from the National Natural Science Foundation of China (No.51478146,No. 51409072) for the research work presented herein is gratefully acknowledged.

Abstract: In seasonally frozen regions, freezing-and-thawing action is the main cause responsible for the destruction of canals, which is closely linked to the temperature gradient and water transport. To investigate the behaviour of soils under freezing-and-thawing actions, many numerical models have been established that consider the important coupling of moisture transport and temperature evolution; but they contain excessive parameters, some of which are rather difficult to determine. Based on the well-known Harlan's theory, a simple moisture-heat coupling model was recently proposed to quantify the coupled moisture-heat transport performance of soils in terms of the central temperature and porosity. The mathematical module of COMSOL Multiphysics was further employed to solve the governing equations numerically. To validate our model, a thorough experimental scheme was carried out in our lab. The measured temperature distribution was found to be consistent with the predicted results.

Key words: saturated frozen soil, moisture-heat coupling, freezing-and-thawing action, canal

Azmatch TF, Sego DC, Arensonb LU, et al., 2012. New ice lens initiation condition for frost heave in fine-grained soils. Cold Regions Science and Technology, 82: 8-13. DOI: 10.1016/j.coldregions.2012.05.003. [DOI:10.1016/j.coldregions.2012.05.003]
Bai QB, Li X, Tian YH, et al., 2015. Equations and numerical simulation for coupled water and heat transfer in frozen soil. Journal of Geotechnical Engineering, 37(7): 131-136. DOI: 10.11779/ CJGE2015S2026. (in Chinese)
COMSOL Multiphysics User's Guide (Version:5.1a). Stockholm: COMSOL AB, 2015.
Gilpin RR, 1980. A model for the prediction of ice lensing and frost heave in soils. Water Resources Research, 16(5): 918-930. DOI: 10.1029/WR016i005p00918. [DOI:10.1029/WR016i005p00918]
Harlan RL, 1973. Analysis of coupled heat-fluid transport in partially frozen soil. Water Resource Research, 9(5): 1314-1322. DOI: 10.1029/WR009i005p01314. [DOI:10.1029/WR009i005p01314]
Konrad M, 1980. A mechanistic theory of ice lens formation in fine-grained soils. Canadian Geotechnical Journal, 17(4): 473-486. DOI: 10.1139/t80-056. [DOI:10.1139/t80-056]
Leonid B, 2009. The modelling of the freezing process in fine-grained porous media: Application to the frost heave estimation. Cold Regions Science and Technology, 56(2): 120-134. DOI: 10.1016/j.coldregions.2008.11.004. [DOI:10.1016/j.coldregions.2008.11.004]
Li SY, Zhang MY, Tian YB, et al., 2015. Experimental and numerical investigations on frost damage mechanism of a canal in cold regions. Cold Regions Science and Technology, 116: 1-11. DOI: 10.1016/j.coldregions.2015.03.013. [DOI:10.1016/j.coldregions.2015.03.013]
Li Z, Liu SH, Feng YT, et al., 2012. Numerical study on the effect of frost heave prevention with different canal structures in seasonally frozen ground regions. Cold Regions Science & Technology, 85(1): 242-249. DOI: 10.1016/j.coldregions.2012.09.011. [DOI:10.1016/j.coldregions.2012.09.011]
Liu XD, Wang ZZ, Yan CC, et al., 2011. Exploration on anti-frost heave mechanism of lining canal with double films based on computer simulation. Transactions Chinese Society Agricultural Engineering, 27(1): 29-35. DOI: 10.3969/j.issn.1002-6819.2011.01.005. (in Chinese)
Liu Z, Yu X, 2011. Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation. Acta Geotechnica, 6(2): 51-65. DOI: 10.1007/s11440-011-0135-6. [DOI:10.1007/s11440-011-0135-6]
Lu N, 2004. Unsaturated Soil Mechanics. John Wiley and Sons, pp. 386-413.
Miller RD, 1972. Freezing and heaving of saturated and unsaturated soils. Highway Research Record, 393: 1-11. DOI: 10.1021/ba-1972-0110.ap001. [DOI:10.1021/ba-1972-0110.ap001]
O'Neil K, Miller RD, 1985. Exploration of a rigid-ice model of frost heave. Water Resources Research, 21(3): 281-296. DOI: 10.1029/WR021i003p00281. [DOI:10.1029/WR021i003p00281]
Shen M, Branko L, 1990. Modeling of coupled heat moisture and stress field in freezing soil. Cold Region Science and Technology, 14(3): 237-246. DOI: 10.1016/0165-232X(87)90016-4. [DOI:10.1016/0165-232X(87)90016-4]
Tan XJ, Chen WZ, Tian HM, et al., 2011. Water flow and heat transport including ice/water phase change in porous media: Numerical simulation and application. Cold Regions Science and Technology, 68(s1-s2): 74-84. DOI: 10.1016/j.coldregions.2011.04.004. [DOI:10.1016/j.coldregions.2011.04.004]
Taylor GS, Luthin JN, 1978. A model for coupled heat and moisture transfer during soil freezing. Canadian Geotechnical Journal, 15(4): 548-555. DOI: 10.1139/t78-058. [DOI:10.1139/t78-058]
Thomas HR, Cleall PJ, Li YC, et al., 2009. Modelling of cryogenic processes in permafrost and seasonally frozen soils. Géotechnique, 59(3): 173-184. DOI: 10.1680/geot.2009.59.3.173. [DOI:10.1680/geot.2009.59.3.173]
Yuan C, Yang CS, Zhang LH, 2014. Mechanisms discussion of frost heave and test verifications of moisture migration. Sciences in Cold and Arid Regions, 6(5): 447-454. DOI: 10.3742/SP.J.1226.2014.00447. [DOI:10.3742/SP.J.1226.2014.00447]
Zhang S, Teng JD, He ZY, et al., 2016. Importance of vapor flow in unsaturated freezing soil: a numerical study. Cold Regions Science and Technology, 126: 1-9. DOI: 10.1016/j.coldregions.2016.02.011. [DOI:10.1016/j.coldregions.2016.02.011]
Zhang ZX, Kushwaha RL, 1998. Modeling soil freeze-thaw and ice effect on canal bank. Canadian Geotechnical Journal, 35(4): 655-665. DOI: 10.1139/cgj-35-4-655. [DOI:10.1139/cgj-35-4-655]
Zhong H, Wang XF, Zhang B, 2013. Research on hydraulic soil slope frost heaving damage model test. Applied Mechanics and Materials, 256-259: 422-426. DOI: 10.4028/www.scientific.net/AMM.256-259.422. [DOI:10.4028/www.scientific.net/AMM.256-259.422]
Zhou JZ, 2012. Study on moisture-heat-stress interaction in freeze-thaw process of soil. Beijing: Chinese Academy of Science, pp. 27-33. (in Chinese)
Zhou JZ, Li DQ, 2012. Numerical analysis of coupled water, heat and stress in saturated freezing soil. Cold Regions Science and Technology, 72: 43-49. DOI: 10.1016/j.coldregions.2011.11.006. [DOI:10.1016/j.coldregions.2011.11.006]
Zhou JZ, Wei CF, Li DQ, et al., 2014. A moving-pump model for water migration in unsaturated freezing soil. Cold Regions Science and Technology, 104-105: 14-22. DOI: 10.1016/j.coldregions.2014.04.006. [DOI:10.1016/j.coldregions.2014.04.006]
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!