Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (4): 267-281.doi: 10.1016/j.rcar.2022.09.005.

Previous Articles    

Discussion on pile axial load test methods and their applicability in cold regions

JiaWei Gao1,2,Ji Chen1(),Xin Hou1,2,QiHang Mei1,2,YongHeng Liu1,2   

  1. 1.Beiluhe Observation and Research Station on Frozen Soil Engineering and Environment in Qinghai-Tibet Plateau, State Key Laboratory of Frozen Soil Engineering, NIEER, CAS, Lanzhou, Gansu 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-10-30 Accepted:2022-02-24 Online:2022-08-31 Published:2022-09-30
  • Contact: Ji Chen E-mail:chenji@lzb.ac.cn
  • Supported by:
    the Strategic Priority Research Program of the Chinese Academy of Science(XDA20020102);the Science and Technology Project of State Grid Corporation of China(SGQHDKYOSBJS201600077);the Natural Science Foundation of China(41101065);the State Key Laboratory of Frozen Soils Engineering Foundation(SKLFSE-ZT-34)

Abstract:

The measurement of pile axial load is of great significance to determining pile foundation design parameters such as skin friction and end bearing capacity and analyzing load transfer mechanisms. Affected by the temperature and ice content of frozen ground, the interface contact relationship between pile foundation and frozen soil is complicated, making pile axial load measurements more uncertain than that in non-frozen ground. Therefore, it is necessary to gain an in-depth understanding of the current pile axial load test methods. Four methods are systematically reviewed: vibrating wire sensors, strain gauges, sliding micrometers, and optical fiber strain sensors. At the same time, the applicability of the four test methods in frozen soil regions is discussed in detail. The first two methods are mature and commonly used. The sliding micrometer is only suitable for short-term measurement. While the Fiber Bragg grating (FBG) strain gauge meets the monitoring requirements, the Brillouin optical time-domain reflectometer (BOTDR) needs further verification. This paper aims to provide a technical reference for selecting and applying different methods in the pile axial load test for the stability study and bearing capacity assessment of pile foundations in cold regions.

Key words: pile axial load, test methods, pile shaft resistance, sensors, cold regions

Figure 1

Structure diagram of the reinforcement stress meter"

Figure 2

Layout and field installation of the reinforcement stress meter in a bored pile. (a) Field installation layout. (b) View of a reinforcement stress meter"

Figure 3

Basic structure diagram of a strain gauge"

Figure 4

Layout and field installation of strain gauges in a precast concrete pile. (a) Layout and field installation. (b) Strain gauge dimensions"

Figure 5

Principle of the sliding micrometer"

Figure 6

Layout and details of sliding micrometers in a bored pile. (a) Layout in a steel reinforcement bar cage and the connection of the probe to the cable. (b) Cable disc with a winch"

Figure 7

Structure diagram of fiber Bragg grating"

Figure 8

Layout and installation method of fiber Bragg grating sensors in a bored pile. (a) Field installation layout. (b) View of fiber Bragg grating sensors"

Figure 9

Measurement schematic of Brillouin optical time-domain reflectometer"

Figure 10

Layout and field installation of Brillouin optical time-domain reflectometerin a bored pile. (a) Installation in a reinforcement cage. (b) Optical fiber cable"

Table 1

Summary of the test methods"

Test methodsMeasuring rangeMeasurement accuracyWorking temperature range (℃)Remote data transmission (Yes/No)Applicability in cold regionsAdvantagesDisadvantages
Reinforcement stress meterrange -100 to 250 MPa±0.1% F.S.[25, 60]YesYesVibration resistant and simple structureEasily damaged
Stain gauge1-20,000 με±0.1% F.S.[30, 80]YesYesSmall size and simple structureEasily damaged
Sliding micrometer±10 mm±0.003 mm/m[20, 60]NoShort-term measurement onlyHigh precision and small driftManual calibration required before and after each test
Fiber Bragg grating±3,500 με±1 με[40, 100]YesYesHigh precision and high sampling frequencyMonitoring of measurement points only
Brillouin optical time-domain reflectometer±2,700 με±30 με[100, 500]YesFurther validation is requiredSingle-ended and non-destructive monitoringLow measurement precision and low sampling frequency
Baldwin C, Poloso T, Chen T, et al., 2001. Structural monitoring of composite marine piles using fiber optic sensors. Proceedings of SPIE-the International Society for Optical Engineering, 4330. DOI: 10.1117/12.434149 .
doi: 10.1117/12.434149
Battista ND, Kechavarzi C, Soga K, 2016. Distributed fiber optic sensors for monitoring reinforced concrete piles using Brillouin scattering. International Society for Optics and Photonics, 9916: 99160U. DOI: 10.1117/12.2236633 .
doi: 10.1117/12.2236633
Bao YB, Sun JQ, Huang Q, 2020. Distributed fiber sensor based on Brillouin optical time domain reflection technique. Laser & Optoelectronics Progress, 57(21): 21-39. DOI: 10.3788/LOP57.210002. (in Chinese)
doi: 10.3788/LOP57.210002.
Culshaw B, Dakin J, 1988. Optical Fiber Sensors. Huazhong University of Science & Technology Press. pp. 7. (in Chinese)
Cui HL, Shi B, Xu HZ, et al., 2004. BOTDR optic fiber temperature monitoring technique and its application in civil engineering. Journal of Disaster Prevention and Mitigation Engineering, 24(3): 252-256. DOI: 10.3969/j.issn.1672-2132.2004.03.004. (in Chinese)
doi: 10.3969/j.issn.1672-2132.2004.03.004.
Chen SQ, 2005. Measuring the load-transfer functions of piles by using sliding micrometers. Chinese Journal of Rock Mechanics and Engineering, 24(7): 2167-2171. DOI: 10.3321/j.issn:1000-6915.2005.07.031. (in Chinese)
doi: 10.3321/j.issn:1000-6915.2005.07.031.
Chen WH, 2011. Experimental Research of Freezing Strength and Negative Friction of Pile Side in Permafrost region. M.S. Thesis, Harbin Institute of Technology, pp. 27-41. (in Chinese)
Chen K, 2018. Struct Axial Forces Monitoring and Influence Factors Analysis of Concrete in Deep Foundation Pit of Chengdu Metro Line Four Wan Nian Station. M.S. Thesis, Southwest University of Science and Technology, pp. 5565. (in Chinese)
Chu HP, Fan GY, Zhao Y, et al., 2018. Some problems in application of rebar strain meter. Journal of Dam and Security, 110(06): 42-46. DOI: CNKI:SUN:DBAQ.0.2018-06-009. (in Chinese)
doi: CNKI:SUN:DBAQ.0.2018-06-009.
Cai Y, Xu LR, Zhou DQ, et al., 2019. Model test research on method of self-balance and traditional static load. Rock and Soil Mechanics, 40(08): 3011-3018. DOI: 10.16285/j.rsm. 2018.0829. (in Chinese)
doi: 10.16285/j.rsm. 2018.0829.
Dong ZR, Zhao H, Huang SJ, et al., 2006. Analysis on the deformation in the foundation excavation of Xiaowan high arch dam. Chinese Journal of Underground Space and Engineering, 2(06): 1014-1018. DOI: 10.3969/j.issn.1673-0836. 2006.06.029. (in Chinese)
doi: 10.3969/j.issn.1673-0836. 2006.06.029.
Dai M, Zhou YD, Zhang T, 2006. Recent researches on soil-pile interaction. Journal of Hohai University (Natural Sciences), 34(5): 568-571. DOI: 10.3321/j.issn:1000-1980. 2006.05.022. (in Chinese)
doi: 10.3321/j.issn:1000-1980. 2006.05.022.
Zhang XH, 2018. Research on Side Friction of Old Clay Soil Pile in Changchun Area. M.S. Thesis, Jilin Jianzhu University, pp. 46. (in Chinese)
Gao DZ, 2002. Design Method and Construction Technology of Pile Foundation. Chinese Machine Press, pp. 1-6. (in Chinese)
Ge CM, 2012. Application of mobile extensometer in the static loading test of concrete pile piles. Soil Engineering and Foundation, 26(06): 106-108. DOI: 10.3969/j.issn.1004-3152.2012.06.031. (in Chinese)
doi: 10.3969/j.issn.1004-3152.2012.06.031.
Gao L, Han C, Xu ZQ, et al., 2019. Experimental study on deformation monitoring of bored pile based on BOTDR. Applied Sciences, 9(12): 2435. DOI: 10.3390/app9122435 .
doi: 10.3390/app9122435
Hill KO, Fujii Y, Johnson DC, et al., 1978. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Applied Physics Letters, 32(10): 647-649. DOI: 10.1063/1.89881 .
doi: 10.1063/1.89881
Horiguchi T, Kurashima T, 1989. Tensile strain dependence of Brillouin frequency shift in silica optical fibers. IEEE Photon. Technol. Lett, 1(5): 107-108. DOI: 10.1109/68.34756 .
doi: 10.1109/68.34756
Hu JA, Qin Y, Shen CL, 1996. Design and manufacturing of the electric resistance type of strain sensor. Journal of Tongji University (Natural Science), (01): 111-116. DOI: CNKI:SUN:TJDZ.0.1996-01-031. (in Chinese)
doi: CNKI:SUN:TJDZ.0.1996-01-031.
He YL, Gao WL, Xu FM, et al., 2007. The application of sliding micrometer in pile strain testing. Electric Power Survey & Design, (3): 6-9. DOI: 10.3969/j.issn.1671-9913.2007. 03.002. (in Chinese)
doi: 10.3969/j.issn.1671-9913.2007. 03.002.
Huang JJ, 2007. Comparative Study of Fixed Modulus of Elasticity and Variable Modulus of Elasticity Algorithms in Pile Internal Force Testing. Unpublished M.Sc. Thesis, China University of Geosciences.
Hu SY, Li WP, Wang WL, 2011. Principle and application of instrumented pile test. Chinese Journal of Geotechnical Engineering, 33(S2): 422-427. DOI: http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/Y2011/V33/Isup2/422. (in Chinese)
doi: http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/Y2011/V33/Isup2/422.
Han L, Yao AJ, Han JW, 2014. New method and application of negative friction resistance monitoring for PHC pipe pile. Advanced Materials Research, 1065-1069: 138-142. DOI: https://doi.org/10.4028/www.scientific.net/AMR. 1065-1069.138 .
doi: 10.4028/www.scientific.net/AMR. 1065-1069.138
Huang XH, 2017. Analysis and treatment of failure of vibrating wire type steel stress gauge. Hydropower and New Energy, (10): 35-38. DOI: CNKI:SUN:HBFD.0.2017-10-010. (in Chinese)
doi: CNKI:SUN:HBFD.0.2017-10-010.
Hu XD, Li R, Xu Y, et al., 2018. Sensor and Detection Technology. Chinese Machine Press, pp. 36-42. (in Chinese)
Jiang DS, He W, 2002. Review of applications for fiber Bragg grating sensors. Journal of Optoelectronics·Laser, 13(04): 420-430. (in Chinese)
Jiang GJ, 2013. Experimental study on freezing pressure of 169 m single layer clay in Zhangji Coal Mine. Unpublished M.Sc. Thesis, Ccteg China Coal Research Institute. (in Chinese)
Jiang Z, Liu WQ, Wang SJ, et al., 2016. The distributed NDT (Non-Destructive Testing) technology on the highway foundation in the seasonal frozen region. Shanxi Architecture, 42(13): 141-143. DOI: 10.13719/j.cnki.cn14-1279/tu.2016. 13.076. (in Chinese)
doi: 10.13719/j.cnki.cn14-1279/tu.2016. 13.076.
Kao KC, Hockham GA, 1966. Dielectric-fibre surface waveguides for optical frequencies. Proceedings of the Institution of Electrical Engineers, 113(7): 1151-1158. DOI: 10. 1049/piee.1966.0189 .
doi: 10. 1049/piee.1966.0189
Kovári K, Christian A, Jakob K, 1979. New Developments in the Instrumentation of Underground Openings. In 4th Rapid Excavation and Tunnelling Conference, 817-837. USA: Society of Mining Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers.
Kovari K, Amstad C, 1982. A new method of measuring deformations in diaphragm walls and piles. Géotechnique, 32(4). DOI: 10.1680/geot.1982.32.4.402 .
doi: 10.1680/geot.1982.32.4.402
Kov'ari K, Peter G, 1983. Continuous strain monitoring in the rock foundation of a large gravity dam. Rock Mechanics and Rock Engineering, 16(3). DOI: 10.1007/BF01033277 .
doi: 10.1007/BF01033277
Kurashima T, Horiguchi T, Izumita H, et al., 1993. Brillouin Optical-Fiber Time Domain Reflectometry (Special Issue on Optical Fiber Cables and Related Technologies). IEICE Transactions on Communications, E76-B(4): 382-390.
Kurashima T, 1997. Application of fiber optic distributed sensor for strain measurement in civil engineering. Proceedings of SPIE-The International Society for Optical Engineering, 3241: 247-258. DOI: 10.1117/12.293504 .
doi: 10.1117/12.293504
Klar A, Bennett PJ, Soga K, et al., 2006. Distributed strain measurement for pile foundations. ICE Proceedings Geotechnical Engineering, 159 (3): 135-144. DOI: 10.1680/geng. 2006.159.3.135 .
doi: 10.1680/geng. 2006.159.3.135
Krasiński A, Kusio T, 2015. Pile model tests using strain gauge technology. Studia Geotechnica et Mechanica, 37(3): 49-52. DOI: 10.1515/sgem-2015-0032 .
doi: 10.1515/sgem-2015-0032
Lu XL, Sun YL, 1986. The measurement of tangential frost heaving force of pile foundation by steel bar meter and its effect. Water Resources & Hydropower of Northeast China, (10): 3134. DOI: CNKI:SUN:DBSL.0.1986-10-009. (in Chinese)
doi: CNKI:SUN:DBSL.0.1986-10-009.
Li GY, 1988. Introduction of sliding micrometer. Rock and Soil Mechanics, 9(1): 77-81. DOI: CNKI:SUN:YTLX. 0.1988-01-009. (in Chinese)
doi: CNKI:SUN:YTLX. 0.1988-01-009.
Li GY, Huang Y, 2000. Linewise observation and portable instruments on strain monitoring in geomechanics. Chinese Journal of Rock Mechan Ics and Engineering, 20(1): 99-109. DOI: 10.3321/j.issn:1000-6915.2001.01.023. (in Chinese)
doi: 10.3321/j.issn:1000-6915.2001.01.023.
Li LH, Liu JP, Sun JZ, et al., 2003. Determining the bearing capacity of the pile below a certain depth by the method combining loading test and steel bar gauge measurement. Geoscience, 17(1): 110-114. DOI: 10.3969/j.issn.1000-8527. 2003.01.018. (in Chinese)
doi: 10.3969/j.issn.1000-8527. 2003.01.018.
Leng WM, Lu WT, Xie WL, et al., 2004. Study on static and dynamic load test of pile in situ. Chinese Journal of Geotechnical Engineering, 26(5): 619-622. DOI: 10.3321/j.issn:1000-4548.2004.05.009. (in Chinese)
doi: 10.3321/j.issn:1000-4548.2004.05.009.
Lee W, Lee WJ, Lee SB, et al., 2004. Measurement of pile load transfer using the Fiber Bragg Grating sensor system. Canadian Geotechnical Journal, 41(6): 1222-1232. DOI: 10. 1139/t04-059 .
doi: 10. 1139/t04-059
Lu WT, Wang YH, Leng WM, 2006. Testing and numerical analysis of load transfer mechanism of PHC pile. Rock and Soil Mechanics, 27(3): 466-470. DOI: 10.3969/j.issn.1000-7598.2006.03.026. (in Chinese)
doi: 10.3969/j.issn.1000-7598.2006.03.026.
Li HQ, Sun HY, Liu YL, et al., 2008. Application of optical fiber sensing technology to slope model test. Chinese Journal of Rock Mechanics and Engineering, (08): 1703-1708. DOI: 10.3321/j.issn:1000-6915.2008.08.022. (in Chinese)
doi: 10.3321/j.issn:1000-6915.2008.08.022.
Li S, 2009. Study and Application About Bridge Cable Force Testing Methods Based on Fiber Optical Grating Sensing Principle. Ph.D. Thesis, Wuhan University of Technology. pp. 14-15. (in Chinese)
Liu YL, 2011. Application Research on Distributed Optical Fiber Sensing Technology for Monitoring of Slope Engineering. Ph.D. Thesis, Zhejiang University. pp. 73. (in Chinese)
Liu YL, Sun HY, Yu Y, et al., 2012. BOTDR monitoring analysis of anti-sliding pile internal force. Journal of Zhejiang University (Engineering Science), 46(02): 243-249. DOI: CNKI:SUN:ZDZC.0.2012-02-012. (in Chinese)
doi: CNKI:SUN:ZDZC.0.2012-02-012.
Li SJ, XiaTF, Hudson JA, 2013. ISRM Suggested Method for Measuring Rock Mass Displacement Using a Sliding Micrometer. Rock Mechanics & Rock Engineering, 46(3): 645-653. DOI: 10.1007/s00603-012-0345-8 .
doi: 10.1007/s00603-012-0345-8
Li ZY, 2014. Research on Calculation Method of Concrete Struct Axial Force Monitoring Value on Excavation. M.S. Thesis, South China University of Technology. pp. 38-39. (in Chinese)
Lu Y, Shi B, Xi J, et al., 2014. Field study of BOTDR-based distributed monitoring technology for ground fissures. Journal of Engineering Geology, 22(01): 8-13. DOI: CNKI:SUN:GCDZ.0.2014-01-002. (in Chinese)
doi: CNKI:SUN:GCDZ.0.2014-01-002.
Liu JJ, 2016. Experimental study on rheological properties of frozen silty clay-concrete pile interface. M.S. Thesis, Lanzhou Jiaotong University. pp. 1-3. (in Chinese)
Liu XQ, 2016. Application of reinforcement gauge in the calculation of friction resistance of pedestal pile. Engineering and Construction, 30(6): 815-817. DOI: 10.3969/j.issn. 1673-5781.2016.06.030. (in Chinese)
doi: 10.3969/j.issn. 1673-5781.2016.06.030.
Lu JF, Shuai J, Liu JX, 2017. Experimental study on the interaction between pile and soil during the unidirectional freezing. Journal of Chongqing Jiaotong University (Natural Science), 36(11): 56-60. DOI: 10.3969/j.issn.1674-0696. 2017.11.11. (in Chinese)
doi: 10.3969/j.issn.1674-0696. 2017.11.11.
Mendez A, Morse T, Mendez F, 1990. Applications of embedded optical fiber sensors in reinforced concrete buildings and structures. OE/FIBERS '89, 1170: 60-69. DOI: 10.117/12.963084 .
doi: 10.117/12.963084
Ministry of Housing and Urban-Rural Development of the People's Republic of China (MOHURD), 2014. JGJ 106-2014, Technical Code for Testing of Building Foundation piles. Beijing: China Architecture & Building Press, pp. 59-62. (in Chinese)
Meng SJ, Sun YQ, Wang M, 2020. Fiber Bragg grating sensors for subgrade deformation monitoring in seasonally frozen regions. Structural Control and Health Monitoring, 27(1). DOI: 10.1002/stc.2472 .
doi: 10.1002/stc.2472
Ma JX, Zhang MY, Wang YH, 2020. Current status and prospects of test techniques for prestressed high strength concrete pipe pile. Journal of Engineering Geology, 28(04): 896-906. DOI: 10.13544/j.cnki.jeg.2019-290. (in Chinese)
doi: 10.13544/j.cnki.jeg.2019-290.
Nanjing University of Aeronautics and Astronautics (NUAA), Beijing University of Aeronautics and Astronautics (BUAA), 1980. Sensor Principle. National Defense Industry Press, pp. 51. (in Chinese)
Nafiul H, Md AF, Murad Y, 2019. Development of Axial Load Transfer (T-Z) Analytical Model for the PSC Piles. Geo-Congress. pp. 130-139. DOI: 10.1061/9780784482094.013 .
doi: 10.1061/9780784482094.013
Oh JH, Lee W, Sang BL, et al., 2000. Analysis of Pile Load Transfer Using Optical Fiber Sensor. In Spies International Symposium on Smart Structures & Materials. International Society for Optics and Photonics, pp. 349-358. DOI: 10. 1117/12.383156.
Ohno H, Naruse H, Yasue N, et al., 2001. Development of highly stable BOTDR strain sensor employing microwave heterodyne detection and tunable electric oscillator. Proceedings of Advanced Photonic Sensors & Applications II, SPIE, 4596: 74-85.
Piao CD, 2008. Application of distributed fiber optic sensing techniques in bored pile detection. Chinese Journal of Geotechnical Engineering, 30(7): 978-981. DOI: JournalArticle/5aecdc82c095d710d405412a. (in Chinese)
doi: JournalArticle/5aecdc82c095d710d405412a.
Piao CD, Shi B, Gao L, 2010. Characteristics and application of BOTDR in distributed detection of pile foundation. Advanced Materials Research, 163-167: 2657-2665. DOI: 10.4028/www.scientific.net/AMR.163-167.2657 .
doi: 10.4028/www.scientific.net/AMR.163-167.2657
Pang DW, 2016. Research on Monitor of Subgrade Deformation Subjected to Vehicle Loads Based on FBG Technology in Seasonal Frozen Region. M.S. Thesis, Institute of Engineering Mechanics, China Earthquake Administration, pp. 21-32. (in Chinese)
Pelecanos L, Soga K, 2018. Development of Load-transfer Curves for Axially-loaded Piles Using Fibre-optic Strain Data, Finite Element Analysis and Optimization. 9th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE). Numerical Methods In Geotechnical Engineering IX Vol 2, pp. 1025-1030. DOI: 10.1201/9781351003629-129 .
doi: 10.1201/9781351003629-129
Qin SW, Gu C, 2008. Principle and application of BOTDR and wavelet processing of its signal. Journal of Mechatronics, 14(11): 54-56. DOI: 10.3969/j.issn.1007-080X.2008.11.020. (in Chinese)
doi: 10.3969/j.issn.1007-080X.2008.11.020.
Sun YC, Liu YL, Meng QH, 2000. Design, Manufacture and Application of Pressure Sensor. Metallurgical Industry Press, pp. 366-400. (in Chinese)
Shi HQ, Zhang J, Ru BX, 2003. The application and research of the technology of sliding micrometer in pile frictional resistance test. Geotechnical Engineering Technique, (04): 193-196. DOI: 10.3969/j.issn.1007-2993.2003.04.002. (in Chinese)
doi: 10.3969/j.issn.1007-2993.2003.04.002.
Schmidt HC, Straub T, Naumann M, et al.,2003. Strain measurements by fiber Bragg grating sensors for in-situ pile loading tests. Proceedings of the SPIE, 5050: 289-294. DOI: 10.1117/12.484238 .
doi: 10.1117/12.484238
Su Y, Sun YC, Li GY, 2004. Comparing the different arithmetic methods for the offset drift compensation of pressure sensor. Chinese Journal of Sensors and Actuators, (03): 375-378. DOI: 10.3969/j.issn.1004-1699.2004.03.006. (in Chinese)
doi: 10.3969/j.issn.1004-1699.2004.03.006.
Shi B, Xu HZ, Zhang D, et al., 2004. Feasibility study on application of BOTDR to health monitoring for large infrastructure engineering. Chinese Journal of Rock Mechanics and Engineering, 23(3): 493-499. DOI: 10.3321/j.issn:1000-6915.2004.03.025. (in Chinese)
doi: 10.3321/j.issn:1000-6915.2004.03.025.
Sun XX, Zhang H, Tian M, 2007. Experimental study on vertical pullout capacity of cast-in-site pile in permafrost region. Rock and Soil Mechanics, 28(10): 2110-2114. DOI: 10.3969/j.issn.1000-7598.2007.10.020. (in Chinese)
doi: 10.3969/j.issn.1000-7598.2007.10.020.
Shen XY, 2010. Study on the Strain Sensing and Its Enlarging Technology Based on Fiber Grating. Ph.D. Thesis, Tianjin University, pp. 125. (in Chinese)
Su Z, 2011. Modern Sensing Technology: Principle, Method and Interface Circuit. Publishing House of Electronics Industry, pp. 229. (in Chinese)
Shuai J, 2017. Study on Interaction Between Frozen Soil and Pile Foundation. M.S. Thesis, Jiangsu University, pp. 29-31. (in Chinese)
Sun GL, Li C, Zhang XH, 2019. The research and application of sliding micrometer to measure the internal force of pile in Changchun area. Sichuan Building Materials, 45(6): 75-77. DOI: CNKI:SUN:SCJZ.0.2019-06-045. (in Chinese)
doi: CNKI:SUN:SCJZ.0.2019-06-045.
Sinnreich J, 2020. Optimizing the arrangement of strain gauges in pile load testing. Geotechnical Testing Journal, 44(5). DOI: 10.1520/GTJ20200033 .
doi: 10.1520/GTJ20200033
Wang CH, 1994. Discussion on the Method of Making Indoor Pile Foundation Model. In: Ye SL et al. (eds.). Proceedings of the Seventh Academic Conference on Soil Mechanics and Foundation Engineering, China Civil Engineering Society. Xi'an, China, pp. 437-441. (in Chinese)
Wang HX, Zhang SY, 2002. Sensor Principles and Applications. Tianjing University Press, pp. 239. (in Chinese)
Wang SM, Wu G, Yu RL, et al., 2009. Application of sliding micrometer in stress test of pile foundation. Chinese Journal of Underground Space and Engineering, 5(S2): 1708-1711. DOI: 10.3969/j.issn.1673-0836.2009.z2.059. (in Chinese)
doi: 10.3969/j.issn.1673-0836.2009.z2.059.
Wei GQ, Shi B, Hu S, et al., 2009. Several key problems in tunnel construction monitoring with FBG. Chinese Journal of Geotechnical Engineering, 31(04): 571-576. DOI: JournalArticle/5af2e450c095d718d8ffac1e. (in Chinese)
doi: JournalArticle/5af2e450c095d718d8ffac1e.
Wang YG, Mei ZR, Zhang JC, 2010. Experimental researches on bearing characteristics of a single pile. Chinese Journal of Geotechnical Engineering, 32(1): 7-11. DOI: CNKI:SUN:YTGC.0.2010-01-004. (in Chinese)
doi: CNKI:SUN:YTGC.0.2010-01-004.
Wang C, 2011. Pile Foundation Calculation Theory and Examples. Southwest Jiaotong University Press, pp. 3-15. (in Chinese)
Wei GS, 2015. Experimental Research on Rheological Properties of Ice Films Between Pile and Freeze Sand Soil. M.S. Thesis, Lanzhou University, pp. 3. (in Chinese)
Wang YH, Sang SK, Liu XY, et al., 2021. Model test of jacked pile penetration process considering influence of pile diameter. Frontiers in Physics. 9: 616410. DOI: 10.3389/fphy. 2021.616410 .
doi: 10.3389/fphy. 2021.616410
Xu SL, Wu YS, 1996. Pile-soil load transfer behavior and model study. Rock and Soil Mechanics, 17(2): 42-52. DOI: CNKI:SUN:YTLX.0.1996-02-007. (in Chinese)
doi: CNKI:SUN:YTLX.0.1996-02-007.
Xia CC, Li YS, 1999. Testing Theory and Monitoring Technology Of Underground Engineering. Tongji University Press, pp. 40-41. (in Chinese)
Xu B, Cao GF, 2006. Study on negative friction of bored piles in backfilled clay. Chinese Journal of Geotechnical Engineering, 28(1): 56-58. DOI: 10.3321/j.issn:1000-4548.2006. 01.010. (in Chinese)
doi: 10.3321/j.issn:1000-4548.2006. 01.010.
Xie CL, Zhou Y, Liu GB, 2013. Selection of initial frequency for axial forces of concrete struts in foundation pits. Zhejiang Construction, 30(8): 34-36. DOI: 10.3969/j.issn.1008-3707.2013.08.010. (in Chinese)
doi: 10.3969/j.issn.1008-3707.2013.08.010.
Yang ZP, 2012. Development of optical fiber strain sensor seamless rail temperature stress tester. Railway Quality Control, 40(07): 17-19. DOI: 10.3969/j.issn.1006-9178. 2012.07.006. (in Chinese)
doi: 10.3969/j.issn.1006-9178. 2012.07.006.
Yin YB, Sun JD, 2014. Discussion on the method of improving the survival rate of reinforcement meter and the application of new calculation method in engineering. Proceedings of National Engineering Investigation Academic Conference. Hohhot, China, pp. 473-476. (in Chinese)
Yuan XY, 2015. The mechanism research of distributed optical fiber monitoring for the deformation of frozen wall. M.S. Thesis, Anhui University of Science & Technology, pp. 45. (in Chinese)
Ye F, Song J, Tang YS, et al.,2017. Research on extrusion displacement of face and advanced core in tunnel with weak surrounding rock. Rock and Soil Mechanics, 38(S1): 323-330. DOI: 10.16285/j.rsm.2017.S1.040. (in Chinese)
doi: 10.16285/j.rsm.2017.S1.040.
Zhang CQ, Peng WW, Yu ZQ, 1995. Primary study of measuring deformation of frozen soil with strain gauge. Journal of Glaciology and Geocryology, 17(S1): 147-150. DOI: CNKI:SUN:BCDT.0.1995-S1-024. (in Chinese)
doi: CNKI:SUN:BCDT.0.1995-S1-024.
Zhang D, Shi B, Wu ZS, et al., 2003. Distributed optical fiber sensor based on BOTDR and its application to structure health monitoring. China Civil Engineering Journal, 36(11): 83-87. DOI: 10.3321/j.issn:1000-131X.2003.11.017. (in Chinese)
doi: 10.3321/j.issn:1000-131X.2003.11.017.
Zhang XW, 2005. Study on the influence of test methods on the bearing behaviors of piles. Rock and Soil Mechanics, 26(11): 1819-1822. DOI: 10.3969/j.issn.1000-7598.2005.11. 033. (in Chinese)
doi: 10.3969/j.issn.1000-7598.2005.11. 033.
Zhou ZA, Liu AY, 2005. The application of Fiber Bragg Grating sensor to high precision strain measure. Progress in Geophysics, 20(03): 864-866. DOI: 10.3969/j.issn.1004-2903.2005.03.047. (in Chinese)
doi: 10.3969/j.issn.1004-2903.2005.03.047.
Zhang ZM, 2007. Pile Foundation Engineering. China Architecture & Building Press, pp. 145. (in Chinese)
Zhao XG, Qiu HT, 2007. Application of fiber Bragg grating sensing technology to tunnel monitoring. Chinese Journal of Rock Mechanics and Engineering, 26(03): 587-593. DOI: 10.3321/j.issn:1000-6915.2007.03.021. (in Chinese)
doi: 10.3321/j.issn:1000-6915.2007.03.021.
Zhu HH, Yin JH, Zhang L, et al., 2008. Deformation monitoring of dam model test by optical fiber sensors. Chinese Journal of Rock Mechanics And Engineering, 27(06): 1188-1194. DOI: 10.3321/j.issn:1000-6915.2008.06.012. (in Chinese)
doi: 10.3321/j.issn:1000-6915.2008.06.012.
Zhang JX, Wu DY, 2008. Research on interaction between resistance at pile and lateral resistance of pile. Rock and Soil Mechanics, 29(02): 541-544. DOI: 10.3969/j.issn.1000-7598.2008.02.047. (in Chinese)
doi: 10.3969/j.issn.1000-7598.2008.02.047.
Zhou DQ, Chen K, Zhao MH, et al., 2009. Technique and application of strain gauge pasted on low strength model pile in indoor model experiment. Journal of Experimental Mechanics, 24(06): 558-562. DOI: JournalArticle/5af52af2c095d718d8222c00. (in Chinese)
doi: JournalArticle/5af52af2c095d718d8222c00.
Zhu HH, Yin JH, Jin W, et al., 2010. Health monitoring of foundations using fiber Bragg grating sensing technology. China Civil Engineering Journal, 43(06): 109-115. DOI: CNKI:SUN:TMGC.0.2010-06-015. (in Chinese)
doi: CNKI:SUN:TMGC.0.2010-06-015.
Zhu QY, 2011. Experimental study of single pile frost heaving cycle in permafrost. M.S. Theis, Lanzhou Jiaotong University, pp. 29. (in Chinese)
Zhu YP, Zhao TS, Chen CL, 2013. Field tests on changes of pile negative friction along its length. Rock and Soil Mechanics, 34(S1): 265-272. DOI: 10.16285/j.rsm.2013.s1.078. (in Chinese)
doi: 10.16285/j.rsm.2013.s1.078.
Zhang S, Jiang SC, Guo JX, et al., Error and correction method of internal stress measurement of reinforced stress meter in pile body. Building Structure, 47(S2): 473-475. DOI: CNKI:SUN:JCJG.0.2017-S2-094. (in Chinese)
doi: CNKI:SUN:JCJG.0.2017-S2-094.
Zhou ZC, 2020. Study on deformation monitoring of frozen soil subgrade based on FBG. M.S. Thesis, Harbin University of Science and Technology, pp. 20. (in Chinese)
Zhou ZC, Wang M, Meng SJ, et al., 2020. Calculation method of permanent deformation of FBG under the influence of low temperature. Rock and Soil Mechanics, 41(12): 4005-4014. DOI: 10.16285/j.rsm.2020.0510. (in Chinese)
doi: 10.16285/j.rsm.2020.0510.
Zhang L, Liu ZH, Yu YT, et al., 2021. The test effect evaluation of distributed optical fiber sensing technology applied to stress test of bored pile. IOP Conference Series: Earth and Environmental Science, 643(1). DOI: 10.1088/1755-1315/643/1/012021 .
doi: 10.1088/1755-1315/643/1/012021
[1] D. A. Razuvaev,A. L. Lanis,M. G. Chakhlov. Rationale for creation of capillary breaking layers in cold regions subgrade by pressure injection of waterproofing compounds [J]. Sciences in Cold and Arid Regions, 2021, 13(5): 366-371.
[2] Aleksey Marchenko, Nicolai Vasiliev, Artem Nesterov, Yuri Kondrashov, Nikolay Belyaev. Laboratory investigations of the thermal strain of frozen soils, using fiber-optic strain gauges based on Bragg gratings [J]. Sciences in Cold and Arid Regions, 2017, 9(3): 192-196.
[3] Ayşe Edinçliler, Ozgur Yildiz. Seismic behavior of tire waste-sand mixtures for transportation infrastructure in cold regions [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 626-631.
[4] Gokhan Baykal. Use of fly ash with no water consumption for cold regions transportation infrastructure [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 619-625.
[5] Qiang Luo, WenQiang Lv, QingZhi Ye, RuiGuo Zhang. Structural analysis and design of frost resistance function for subgrade of high-speed railway ballasted track in cold regions [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 594-604.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!