Sciences in Cold and Arid Regions ›› 2016, Vol. 8 ›› Issue (1): 72–81.doi: 10.3724/SP.J.1226.2016.00072

• ARTICLES • 上一篇    

Statistics of cloud heights over the Tibetan Plateau and its surrounding region derived from CloudSat data

ShengJie Wang1, WenYing He2, HongBin Chen2, JianChun Bian2, ZhenHui Wang3   

  1. 1. China Meteorological Administration, Beijing 100081, China;
    2. LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
    3. Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China
  • 收稿日期:2015-07-07 修回日期:2015-09-22 发布日期:2018-11-23
  • 通讯作者: ShengJie Wang E-mail:wangshengjie@cma.gov.cn
  • 基金资助:
    This research was funded by National Natural Science Foundation of China (40830102 and 41205016).

Statistics of cloud heights over the Tibetan Plateau and its surrounding region derived from CloudSat data

ShengJie Wang1, WenYing He2, HongBin Chen2, JianChun Bian2, ZhenHui Wang3   

  1. 1. China Meteorological Administration, Beijing 100081, China;
    2. LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
    3. Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China
  • Received:2015-07-07 Revised:2015-09-22 Published:2018-11-23
  • Contact: ShengJie Wang E-mail:wangshengjie@cma.gov.cn
  • Supported by:
    This research was funded by National Natural Science Foundation of China (40830102 and 41205016).

摘要: Cloud-radiation interaction has a large impact on the Earth's weather and climate change, and clouds with different heights cause different radiative forcing. Thus, the information on the statistics of cloud height and its variation in space and time is very important to global climate change studies. In this paper, cloud top height (CTH), cloud base height (CBH) and cloud thickness over regions of the Tibetan Plateau, south slope of the plateau and South Asian Monsoon are analyzed based on CloudSat data during the period from June 2006 to December 2007. The results show that frequency of CTH and CBH in unit area over the studied regions have certain temporal-spatial continuity. The CTH and CBH of different cloud types have different variation scopes, and their seasonal variations are distinct. Cloud thickness is large (small) in summer (winter), and the percentages of different cloud types also have certain regularity.

关键词: CloudSat, Tibetan Plateau, cloud height, cloud thickness

Abstract: Cloud-radiation interaction has a large impact on the Earth's weather and climate change, and clouds with different heights cause different radiative forcing. Thus, the information on the statistics of cloud height and its variation in space and time is very important to global climate change studies. In this paper, cloud top height (CTH), cloud base height (CBH) and cloud thickness over regions of the Tibetan Plateau, south slope of the plateau and South Asian Monsoon are analyzed based on CloudSat data during the period from June 2006 to December 2007. The results show that frequency of CTH and CBH in unit area over the studied regions have certain temporal-spatial continuity. The CTH and CBH of different cloud types have different variation scopes, and their seasonal variations are distinct. Cloud thickness is large (small) in summer (winter), and the percentages of different cloud types also have certain regularity.

Key words: CloudSat, Tibetan Plateau, cloud height, cloud thickness

Cai Y, Qian ZA, Wu TW,etal., 2004. Distribution, changes of atmospheric precipitation water over Qinghai-Xizang Plateau and its surroundings and their changeable precipitation climate. Plateau Meteorology,23(1):1-10. DOI:10.3321/j.issn:1000-0534.2004.01.001.
Feng JM, Liu LP, Wang ZJ, etal., 2001. Comparison of cloud observed by ground based Doppler Radarwith TRMM PR in Qinghai-Xizang Plateau, China. Plateau Meteorology, 20(4):345-353. DOI:10.3321/j.issn:1000-0534.2001.04.001.
Feng JM, Liu LP, Wang ZJ, etal., 2002. The statistic characteristics of radar echo and precipitationand some thermodynamic va-riables in Qinghai-Xizang Plateau. Plateau Meteorology, 21(4):368-374. DOI:10.3321/j.issn:1000-0534.2002.04.005.
Frey RA, Baum BA, Menzel WP, et al.,1999. A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 slicing. Journal of Geophysical Research, 104:24547-24555.
Fu YF, Li HT, Zi Y,2007. Case study of precipitation cloud structure viewed by TRMM Satellite in a valley of the Tibetan Plateau. Plateau Meteorology,26(1):98-106. DOI:10.3321/j.issn:1000-0534.2007.01.012.
Huang F, Chen HB, Wang ZH,2003. Analysis of the atmospheric attenuation at 37 GHz and 94 GHz. Remote Sensing Technology and Application, 18(5):269-275. DOI:10.3969/j.issn.1004-0323.2003.05.001.
Huang J,Minnis P,Yi Y,et al.,2007. Summer dust aerosols detected from CALIPSO over the Tibetan Plateau.Geophysical Research Letters,34:L18805.DOI:10.1029/2007GL029938.
Kahn BH,Chahine MT,Stephens GL,et al., 2008. Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount.Atmospheric Chemistry and Physics,8:1231-1248. DOI:10.5194/acp-8-1231-2008.
Liu RX, Liu YJ, Du BY, 2002. Cloud climatic characteristics of the Tibetan Plateau from ISCCP data. Journal of Nanjing Institute of Meteorology,25(2):226-232. DOI:10.3969/j.issn.1674-7097.2002.02.013.
Mace G, 2007. Level 2 geoprof product process description and interface control document,Version 5.3,44.http://www.cloudsat.cira.colostate.edu/dataICDlist.php?go=list&path=/2B-GEOPROF.
Mace GG, Marchand R, Zhang Q,et al.,2007. Global hydrometeor occurrence as observed by CloudSat:Initial observations from Summer 2006.Geophysical Research Letters,34(10):L09808.DOI:10.1029/2006GL029017.
Marchand R, Mace GG, Ackerman T, et al.,2008. Hydrometeor detection using CloudSat-An Earth observing 94GHz cloud radar.Journal of Atmospheric and Oceanic Technology,25(4):519-533.
QieXS, Ralf T,2003. Lightning activities on Qinghai-Xizang Plateau as observed by satellite-based lightning imaging sen sor.Plateau Meteorology, 22(3):289-295. DOI:10.3321/j.issn:1000-0534.2003.03.013.
QiuJH, LvDR, Chen HB, etal.,2003. Modern research progresses in atmospheric physics. Atmospheric Sciences,27:628-652.DOI:10.3878/j.issn.1006-9895.2003.04.14.
Stephens GL,TsaySC, Stackhouse JPW, et al., 1990.The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. Journal of the Atmospheric Sciences,47:1742-1753. DOI:http://dx.doi.org/10.1175/1520-0469(1990)047%3C1742:TROTMA%3E2.0.CO;2.
Stephens GL, Webster PJ, 1981. Clouds and climate:Sensitivity of simple systems.Journal of the Atmospheric Sciences, 38:235-247. DOI:http://dx.doi.org/10.1175/1520-0469(1981)038<0235:CACSOS>2.0.CO;2.
Stephensa GL, Vane DG,Boain RJ,et al.,2002. The CloudSat mis-sion and the A-train.Bulletin of the American Meteorological Society, 83:1771-1790. DOI:http://dx.doi.org/10.1175/BAMS-83-12-1771.
Tao SY, Chen LS, Xu XD, et al., 1998.Progress in Research on the Theory of Qinghai-Xizang Plateau Meteorology Research (the 2nd edition). Beijing:Meteorological Press.
Wang KL, Jiang H, Chen SQ,2001. Cloud cover over Qinghai-Xizang Plateau:comparison among meteorological station observations, ISCCP-C2, and NCEP Reanalysis Data. Plateau Meteorolo-gy,20(3):252-257.DOI:10.3321/j.issn:1000-0534.2001.03.005.
Wang Z,Sassen K, 2001. Cloud type and macrophysical property retrieval using multiple remote sensors. Journal of Appllied-Mereology,40:1665-1682. DOI:http://dx.doi.org/10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2.
Wang Z,Sassen K, 2007. Level 2 cloud scenario classification product process description and interface control document, Version 5.0. pp. 50.http://www.cloudsat.cira.colostate.edu/dataICDlist.php?go=list&path=/2B-CLDCLASS.
Wei L, Zhong Q,1997. Characteristics of cloud climatology over Qinghai-Xizang Plateau. Plateau Meteorology,16(1):10-15. DOI:10.3321/j.issn:1000-0534.1997.01.002.
Weisz E, Li J, Menzel WP, et al., 2007. Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retriev-als.Geophysical Research Letters, 34:L17811.DOI:10.1029/2007GL030676.
Ye DZ, GaoYX, 1979.Qinghai-Xizang Plateau Meteorology Re-search. Beijing:Science Press.
Zhang CH, Yan MH, Dong WS, et al.,2005.Analyses on atmos-pheric stratification characteristics of thunderstorms over Qinghai-Xizang Plateau. Plateau Meteorology,24(5):741-747. DOI:10.3321/j.issn:1000-0534.2005.05.013.
Zhang HF, Guo SG, Zhang YJ, et al., 2003. Distribution characte-ristic of severe convective thunderstorm cloud over Qing-hai-Xizang Plateau. Plateau Meteorology, 22(6):558-564. DOI:10.3321/j.issn:1000-0534.2003.06.005.
[1] HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China[J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207-218.
[2] ZhenMing Wu, Lin Zhao, Lin Liu, Rui Zhu, ZeShen Gao, YongPing Qiao, LiMing Tian, HuaYun Zhou, MeiZhen Xie. Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data[J]. Sciences in Cold and Arid Regions, 2018, 10(2): 114-125.
[3] BenLi Liu, JianJun Qu, ShiChang Kang, Bing Liu. Climate change inferred from aeolian sediments in a lake shore environment in the central Tibetan Plateau during recent centuries[J]. Sciences in Cold and Arid Regions, 2018, 10(2): 134-144.
[4] SiQiong Luo, BoLi Chen, ShiHua Lyu, XueWei Fang, JingYuan Wang, XianHong Meng, LunYu Shang, ShaoYing Wang, Di Ma. An improvement of soil temperature simulations on the Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2018, 10(1): 80-94.
[5] YueFang Li, Zhen Li, Ju Huang, Giulio Cozzi, Clara Turetta, Carlo Barbante, LongFei Xiong. Variations of trace elements and rare earth elements (REEs) treated by two different methods for snow-pit samples on the Qinghai-Tibetan Plateau and their implications[J]. Sciences in Cold and Arid Regions, 2017, 9(6): 568-579.
[6] ShaoYing Wang, Yu Zhang, ShiHua Lyu, LunYu Shang, YouQi Su, HanHui Zhu. Radiation balance and the response of albedo to environmental factors above two alpine ecosystems in the eastern Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2017, 9(2): 142-157.
[7] LunYu Shang, Yu Zhang, ShiHua Lyu, ShaoYing Wang, YinHuan Ao, SiQiong Luo, ShiQiang Chen. Winter estimation of surface roughness length over eastern Qinghai-Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2017, 9(2): 151-157.
[8] Zhuo Ga, Tao Chen, La Ba, PuBuCiRen, Ba Sang. Distribution of winter-spring snow over the Tibetan Plateau and its relationship with summer precipitation in Yangtze River[J]. Sciences in Cold and Arid Regions, 2017, 9(1): 20-28.
[9] ZhiCai Li, Yan Song, Wei Zhang, Jing Zhang, ZiNiu Xiao. Interdecadal correlation of solar activity with Tibetan Plateau snow depth and winter atmospheric circulation in East Asia[J]. Sciences in Cold and Arid Regions, 2016, 8(6): 524-535.
[10] WenTao Du, ShiChang Kang, Xiang Qin, XiaoQing Cui, WeiJun Sun. Atmospheric insight to climatic signals of δ18O in a Laohugou ice core in the northeastern Tibetan Plateau during 1960-2006[J]. Sciences in Cold and Arid Regions, 2016, 8(5): 367-377.
[11] MaoShan Li, ZhongBo Su, YaoMing Ma, XueLong Chen, Lang Zhang, ZeYong Hu. Characteristics of land-atmosphere energy and turbulent fluxes over the plateau steppe in central Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 2016, 8(2): 103-115.
[12] JianZhong Xu, ShiChang Kang, ShuGui Hou, QiangGong Zhang, Jie Huang, CunDe Xiao, JiaWen Ren, DaHe Qin. Characterization of contemporary aeolian dust deposition on mountain glaciers of western China[J]. Sciences in Cold and Arid Regions, 2016, 8(1): 9-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!