Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (2): 107–122.doi: 10.3724/SP.J.1226.2021.20027

• • 上一篇    

  

  • 收稿日期:2020-05-06 接受日期:2020-10-21 出版日期:2021-04-30 发布日期:2021-05-11

Permafrost distribution and temperature in the Elkon Horst, Russia

Mikhail Zhelezniak1,QingBai Wu2,Anatolii Kirillin1,Zhi Wen2,Aleksandr Zhirkov1(),Vladimir Zhizhin1   

  1. 1.Melnikov Permafrost Institute SB RAS, Yakutsk 677000, Russia
    2.State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, Gansu 730000, China
  • Received:2020-05-06 Accepted:2020-10-21 Online:2021-04-30 Published:2021-05-11
  • Contact: Aleksandr Zhirkov E-mail:zhirkov_af@mail.ru

Abstract:

The Elkon Horst is a geological structure that consists of heterogeneous strata with highly variable geocryological and temperature conditions. Gaining accurate knowledge of permafrost distribution patterns within this structure is of both scientific and practical importance. In mountainous terrain, the ground thermal regime is controlled by both surface and subsurface conditions. Surface conditions include snow cover characteristics, the presence or absence of vegetation, vegetation density, etc.. In contrast, subsurface conditions involve rock lithology or petrography, density, quantity and depth of fissures, groundwater, etc.. This article examines ground thermal regimes in various geomorphological settings based on temperature measurement data from geotechnical boreholes. The occurrence and extent of permafrost were evaluated for the entire horst area using direct and indirect methods. The maximum permafrost thickness measured in the Elkon Horst is 330 m, and the estimated maximum is 450 m at higher elevations. Thermophysical properties were determined for the major rock types, and the geothermal heat flux was estimated for the study area. The thermal conductivities were found to vary from 1.47 to 4.20 W/(m·K), and the dry bulk densities to range between 2,236 kg/m3 and 3,235 kg/m3. The average geothermal heat flux was estimated to be 44 mW/m2.

Key words: permafrost, ground temperature, geothermal heat flux, thermal conductivity, horst

"

"

Climate zoneDescriptionTotal solar radiation, kcal/(cm2?a)Mean annual difference between precipitation and evaporation, mmSum of air temperatures >10 °С
East Siberian Continental Climate

moderately humid,

moderately warm

80-110-200 to +200800-1,100

"

No.Borehole IDBorehole depth (m)

Coordinates:

Longitude; Latitude

Elevation (m a.s.l.)Setting
1KCC 1321058°37'N; 126°20'E1,050southeast-facing slope
2KCC 1125058°39'N; 126°16'E910upper part of the east-facing slope
3KCC 925058°39'N; 126°16'E912northwest-facing slope
4KCC 810058°40'N; 126°15'E607foot of the southeast-facing slope
5KCC 78058°40'N; 126°15'E613foot of the southeast-facing slope
6KCC 410058°41'N; 126°10'E1,004watershed
7KCC 215058°40'N; 126°15'E602foot of the southeast-facing slope
811 E1358°38'N; 126°16'E988watershed
92831058°38'N; 126°20'E896southeast-facing slope
10SG-7N2058°41'N; 126°8'E580valley
112461058°37'N; 126°20'E1,066upper part of the north-facing slope
122991058°38'N; 126°20'E925southeast-facing slope
1312E1958°38'N; 126°16'E1,034northwest-facing slope
1421E5058°39'N; 126°22'E801northwest-facing slope
1524E1058°38'N; 126°23'E843northwest-facing slope
1628E26058°38'N; 126°18'E1,040north-facing slope
1734E9058°48'N; 126°13'E454northwest-facing slope
1837E15058°39'N; 126°15'E600valley
192N18058°41'N; 126° 8'E552valley
20KCC 57058°40'N; 126°12'E674valley

"

"

"

"

"

"

"

"

"

"

"

"

"

"

Rock typeγwl (kg/m3)λ (W/(m·K))сγ (kJ/(m3·K))а×(10-6 m2/s)
Granite2,580-2,8602,660(53)1.42-4.122.69(57)1,990-2,2602,100(59)0.65÷1.591.27(59)
Gneiss2,580-2,8802,750(37)1.55-3.312.20(37)2,030-2,2602,170(35)0.73-1.551.03(35)
Crystal shale2,670-3,0902,860(41)1.65-6.642.20(41)2,100-2,4302,240(43)0.75-3.070.97(43)
Amphibolite2,630-3,4603,100(11)1.98-4.202.92(12)2,070-2,5702,400(11)0.88-1.711.20(11)
Quartzite2,480-2,8402,710(11)2.11-7.712.98(11)1,950-2,2402,136(10)0.96-3.701.43(10)
Milonite2,670-2,7602,710(2)1.36-2.291.82(2)2,102-2,3252,200(3)0.65-1.060.86(3)
Metasomatitis2,240-2,9402,670(8)1.67-4.022.60(8)1,760-2,5102,150(9)0.95-1.741.33(9)
Metabasites2,810(1)2.41(1)2,205(1)1.01(1)
Metadiiori2,730-3,2302,900(5)1.75-2.281.98(5)2,150-2,5402,260(5)0.80-1.040.89(5)
Plagioclase2,630-2,9202,720(11)1.61-3.602.45(11)2,070-2,2002,140(11)0.77-1.741.21(11)
Lamprophyre2,560-2,8202,690(8)1.47-2.241.99(8)2,080-2,2202,120(7)0.82-1.070.98(7)
Tectonic breccia with carbonate cement2,290-2,7202,500(7)1.40-3.091.95(7)1,800-2,1401,970(7)0.73-1.460.98(7)
Syenite porphyry2,580-2,6502,610(2)1.75-2.071.91(2)2,030-2,0902,060(2)0.86-0.990.92(2)
Quartz-microcline veins in plagioclase with amphibole-pyrrhotite inclusions2,710-3,0502,880(2)1.96-2.432.19(2)2,140-2,4002,270(3)0.82-1.140.98(3)
Blastoclasitis2,700(1)2.37(1)2,130(1)1.11(1)
Trachicienitis2,480(1)2.04(1)1,950(1)1.04(1)
Balobaev VT, 1971. Features of geothermal processes in permafrost areas. Geocryological Studies. Yakutsk Publishing House, Yakutsk, 9-18. (in Russian)
Balobaev VT, 1991. Geothermy of the Frozen Zone of the Lithosphere of Northern Asia. Nauka: Novosibirsk, pp. 193. (in Russian)
Balobaev VT, Volodko BV, Devyatkin VN, et al., 1985. A Manual on the Use of Semiconductor Thermistors in Geothermal Measurements. Yakutsk: Permafrost Institute SB AS USSR. pp. 48. (in Russian)
Benfield AE, 1939. Terrestrial Heat Flow in Great Britain, Proc. R. Soc. London A, pp. 428-450.
Birch F, 1950. Flow of heat in the Front Range. Geol. Soc. Am. Bull., Colorado, 61: 567-630.
Borisov AA, 1975. USSR Climate in the Past, Present and Future. Leningrad: Leningrad University Press, pp. 432. (in Russian)
Bullard EC, 1939. Heat flow in South Africa, Proc. R. Soc. London A, 474-502.
Correia A, Jones F, 1996. On the importance of measuring thermal conductivities for heat flow density estimates: An example from the Jeanne d'Arc Basin, offshore eastern Canada. Tectonophysics, 257 (1): 71-80, DOI: 10.1016/0040-1951(95)00121-2.
doi: 10.1016/0040-1951(95)00121-2
Daniel FC, Pribnow, John HS, 1995. Determination of thermal conductivity for deep boreholes. Journal of Geophysical Research, 100(B6): 9981-9994.
Gavriliev RI, 1998. Thermophysical Properties of Soils, Rocks and Surface Covers in the Permafrost Zone. Novosibirsk: Siberian Branch of the Russian Academy of Sciences Press, pp. 280. (in Russian)
Gavriliev RI, 2004. Thermophysical Properties of Environmental Components in Permafrost Areas, Reference Book. Novosibirsk Siberian Branch of the Russian Academy of Sciences Press, pp. 146. (in Russian)
Gavriliev RI, Zheleznyak MN, Zhizhin VI, et al., 2013. Thermophysical properties of the main rock types in the Elkon Mountain Massif. Kriosfera Zemli, 17(3): 76-82. (in Russian)
Deming D, Chapman D, 1989. Thermal histories and hydrocarbon generation: Example from Utah-Wyoming thrust belt. AAPG Bull, 73(12): 1455-1471.
Devyatkin VN, 1975. Results of Determining the Deep Heat Flux in Yakutia. Regional and Thematic Geocryological Studies. Nauka: Novosibirsk, pp. 148-150. (in Russian)
Goodrich LE, 1982. The influence of snow cover on the ground thermal regime. Can. Geotech. J, 19: 421-432.
No Guidelines. 242, 1964. Calibration of Semiconductor Thermistors in the Range from -100 to +300 °С. Moscow: Standards Publishing House, pp. 230. (in Russian)
Kudryavtsev VA, 1966. The Temperature of the Permafrost within the USSR. Moscow: Moscow University Press, pp. 9-14. (in Russian)
Kudryavtsev VA, Dostovalov BN, 1967. General Permafrost Studies. Moscow: Moscow University Press, pp. 404. (in Russian)
(ed Kudryavtsev VA.), 1975. Southern Yakutia. Moscow: Moscow State University, pp. 444. (in Russian)
Luo D, Jin H, Bense VF, 2018. Ground surface temperature and the detection of permafrost in the rugged topography on NE Qinghai-Tibet Plateau. Geoderma, 333: 57-68. DOI: 10.1016/j.geoderma.2018.07.011.
doi: 10.1016/j.geoderma.2018.07.011
Mashkovtsev GA, Miguta AK, Naumov SS, 2007. Prospects for the development of the Elkon uranium ore region. Exploration and Protection of Mineral Resources, 6: 11-20. (in Russian)
Marchenko SS, 2010. A model of permafrost formation and occurrences in the intracontinental mountains. Norsk Geografisk Tidsskrift. Norwegian Journal of Geography, 55: 230-234. DOI: 10.1080/00291950152746577.
doi: 10.1080/00291950152746577
Melnikov PI, Tolstikhin NI (eds.), 1974. Permafrost Science. Novosibirsk: Nauka Press, pp. 290. (in Russian)
Misener AD, Thompson LGD, Uffen RJ, 1951. Terrestrial heat flow in Ontario and Quebec. Eos Trans. AGU, 32: 729-738.
Mottaghya DT, Schellschmidt R, Popov YA, et al., 2005. New heat flow data from the immediate vicinity of the Kola super-deep borehole: Vertical variation in heat flow confirmed and attributed to advection. Tectonophysics, 401: 119-142. DOI: 10.1016/j.tecto.2005.03.005.
doi: 10.1016/j.tecto.2005.03.005
Nekrasov IA, Zabolotnik SI, Klimovsky IV, et al., 1967. Permafrost Rocks of the Stanovoi Upland of the Vitim Plateau. Moscow: Nauka, pp. 168. (in Russian)
Pavlov AV, 1979. Thermophysics of Landscapes. Novosibirsk: Nauka, pp. 237.
Peive AV, Menner VV, Pavlova TG, et al., 1970. Thermal Regime of the Deep Earth in the USSR. Moscow: Nauka, pp. 227. (in Russian)
Popov Y, Bayuk I, Parshin A, et al., 2012. New Methods and Instruments for Determination of Reservoir Thermal Properties. Thirty-Seventh Workshop on Geothermal Reservoir Engineering, January 30 - February1, SGP-TR-194, Stanford: Stanford University, pp. 1122-1132.
Popov YA, Pimenov V, Tertychny V, 1983. Achievements in the field of geothermal studies of oil and gas fields. Moscow State Geological Prospecting Academy, Moscow (in Russian)
Popov YA, Pribnow DF, Sass JH, et al., 1999. Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics, 28: 253-276. DOI: 10.1016/S0375-6505(99)00007-3.
doi: 10.1016/S0375-6505(99)00007-3
Pribnow DFC, Sass JH, 1995. Determination of thermal conductivity for deep boreholes. Journal of Geophysical Research, 100 (B6): 9981-9994. DOI: 10.1029/95JB00960.
doi: 10.1029/95JB00960
Sheftel IT, 1973. Thermistors. Moscow: Nauka, pp. 415. (in Russian)
Shvetsov PF, (eds Dostovalov BN.), 1959. Fundamentals of Geocryology (permafrost studies). Moscow: Publishing House of the USSR Academy of Sciences, pp. 459. (in Russian)
Volodko BV, 1979. On the Possibility of Determining, According to the Method of Arbitrary Polarization, the Thickness of Frozen Rocks of Terrigenous Strata. Novosibirsk, pp. 264-267. (in Russian)
Wen Z, Niu F, Yu Q, et al., 2014. The role of rainfall in the thermal-moisture dynamics of the active layer at Beiluhe of Qinghai-Tibetan Plateau. Environmental Earth Sciences, 71(3): 1195-1204. DOI: 10.1007/s12665-013-2523-8.
doi: 10.1007/s12665-013-2523-8
Wu Q, Zhang T, 2010. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. Journal of Geophysical Research, 115(D9): 1-12. DOI: 10.1029/2009JD012974.
doi: 10.1029/2009JD012974
Zhang T, 2005. Influence of the seasonal snow cover on the ground thermal regime: An overview. Reviews of Geophysics, 43(4): 1-23. DOI: 10.1029/2004rg000157.
doi: 10.1029/2004rg000157
Zhao J, Chen J, Wu Q, et al., 2018. Snow cover influences the thermal regime of active layer in Urumqi River Source, Tianshan Mountains, China. Journal of Mountain Science, 15(12): 2622-2636. DOI: 10.1007/s11629-018-4856-y.
doi: 10.1007/s11629-018-4856-y
Zhelezniak MN, 2005. The Subsurface Temperature Field and Permafrost in the Southeastern Part of the Siberian Platform. Novosibirsk: Nauka, pp. 150-227. (in Russian)
Zhelezniak MN, Serikov SI, Zhizhin VI, et al., 2005. The Temperature of Rocks and the Distribution of the Elkonsky Horst Cryolithozone. Bulletin of the M.K. Yakutsk: Ammosov North-Eastern Federal University, pp. 57-65. (in Russian)
Zhirkov A, Zhelezniak M, Permyakov P, et al., 2018. Infiltration influence of liquid atmospheric precipitation on the formation of the temperature regime of frozen soils. Transbaikal State University Journal, 24(6), 4-14. (in Russian)
Zhizhin VI, Loskutov EE, 2014. On the geological history and genesis of gold-uranium deposits in the Elkonsky ore field. Nauka i Obrazovanie, 4: 27-32. (in Russian)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!