Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (5): 284–294.doi: 10.3724/SP.J.1226.2020.00284.

• • 上一篇    

  

  • 收稿日期:2020-03-10 接受日期:2020-07-06 出版日期:2020-10-31 发布日期:2020-10-29

Calculation of salt-frost heave of sulfate saline soil due to long-term freeze-thaw cycles

Tao Wen1,2,Sai Ying1,3(),FengXi Zhou3   

  1. 1.Chongqing Engineering Research Center of Building Health Monitoring and Disaster Prevention in Full-Life-Cycle, Yangtze Normal University, Chongqing, 408100, China
    2.Gansu Academy of Sciences, Lanzhou, Gansu 730000, China
    3.School of Civil Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
  • Received:2020-03-10 Accepted:2020-07-06 Online:2020-10-31 Published:2020-10-29
  • Contact: Sai Ying E-mail:yingsai35910@163.com

Abstract:

Based on salt-frost heave tests of sulfate saline soil under repeated freeze-thaw cycles, this paper discusses the mechanism of the salt-frost heave under long-term freeze-thaw cycles. The results show that the salt-frost heave can be restricted considerably by loads, and there is a critical load for the salt-frost heave cumulative effect. Under this load, peak values of salt-frost heave approach a constant, and the residual values become 0. There is no longer structure heave or cumulative effect of saline soil exposed to freeze-thaw cycles under the critical load. Taking cumulative effect into account in calculations of salt-frost heave, a salt-frost heave model under freeze-thaw cycles is developed.

Key words: sulfate saline soil, freeze-thaw cycles, load, salt-frost heave

"

Water contentRelative density (g/cm3)Liquid limit, WLPlastic limit, WpPlasticity index, IpCoefficient of uniformity, Cu=d60/d10
9.3%2.6926.8%17.6%96.87

"

Anion content (mg/kg)Cationic content (mg/kg)Soluble salt content (mg/kg)
CO32-HCO3-SO42-Cl-Ca2+Mg2+K++Na+
162323373610826111761

"

"

"

"

"

"

"

"

"

ItemLoad (kPa)Parameters
a1a2R2
Peak deformation153.2294.2390.993
301.5642.9480.999
600.3702.1460.994
90-0.7431.7800.983
Residual deformation153.2162.1500.983
301.7101.2270.992
600.5930.2860.982
90-0.7190.0890.989

"

"

Times of cyclesParameters
b1b2b3R2
Peak deformation16.579-6.27626.1510.995
312.215-15.28732.6200.998
517.998-21.59922.6710.999
827.992-31.02712.6650.995
Residual deformation14.164-6.33841.0800.999
310.452-14.59028.7610.999
515.174-20.50624.8330.998

"

"

"

Cheng WT, Wang Y, Wang MN, et al., 2007. Testing study on influence of freezing and thawing circulation on saline soil's cohesion. Rock and Soil Mechanics, 28(11): 2343-2347. DOI: 10.1051/0004-6361/201423882.
doi: 10.1051/0004-6361/201423882
Chu CP, Li B, Hou ZJ, 1998. Salt expansion accumulation of sulphate salty soil under freezing and thawing cycles. Journal of Glaciology and Geocryology, 20(2): 108-111. DOI: CNKI:SUN:BCDT.0.1998-02-002. (in Chinese)
doi: CNKI:SUN:BCDT.0.1998-02-002
Ding ZM, Zhang SS, Yang XH, 2008. Experimental studies of the applicability index of coarse-grained salty soil as an embankment filling. Journal of Glaciology and Geocryology, 30(4): 623-631. DOI: CNKI:SUN:BCDT.0.2008-04-015. (in Chinese)
doi: CNKI:SUN:BCDT.0.2008-04-015
Espinosa RM, Franke L, Deckelmann G, 2008. Model for the mechanical stress due to the salt crystallization in porous materials. Construction and Building Materials, 22: 1350-1367. DOI: 10.1016/j.conbuildmat.2007.04.013.
doi: 10.1016/j.conbuildmat.2007.04.013
Espinosa RM, Franke L, Deckelmann G, 2008. Phase changes of salts in porous materials: crystallization, hydration and deliquescence. Construction and Building Materials, 22: 1758-1773. DOI: 10.1016/j.conbuildmat.2007.05.005.
doi: 10.1016/j.conbuildmat.2007.05.005
Koniorczyk M, 2010. Modelling the phase change of salt dissolved in pore water-equilibrium and non-equilibrium approach. Construction and Building Materials, 24(7): 1119-1128. DOI: 10.1016/j.conbuildmat.2009.12.031.
doi: 10.1016/j.conbuildmat.2009.12.031
Koniorczyk M, Gawin D, 2012. Modelling of salt crystallization in building materials with microstructure-poromechanical approach. Construction and Building Materials, 36(4): 860-873. DOI: 10.1016/j.conbuildmat.2012.06.035.
doi: 10.1016/j.conbuildmat.2012.06.035
Koniorczyk M, Gawin D, Schrefler BA, 2015. Modeling evolution of frost damage in fully saturated porous materials exposed to variable hygro-thermal conditions. Computer Methods in Applied Mechanics and Engineering, 297: 38-61. DOI: 10.1016/j.cma.2015.08.015.
doi: 10.1016/j.cma.2015.08.015
Koniorczyk M, Gawin D, Schrefler BA, 2018. Multiphysics model for spalling prediction of brick due to in-pore salt crystallization. Computers and Structures, 196: 233-245. DOI: 10.1016/j.compstruc.2017.10.013.
doi: 10.1016/j.compstruc.2017.10.013
Li XX, Wang SJ, Xiao RH, et al., 2016. Saline expansion and frost heave of sodium sulfate solution during cooling crystallization process. Chinese Journal of Geotechnical Engineering, 38(11): 2069-2077. DOI: 10.11779/CJGE201611017.
doi: 10.11779/CJGE201611017
Niu XR, Gao JP, 2008. Deduction of salt expansion expression during pure salt expansion period of sulphate saline soil. Chinese Journal of Geotechnical Engineering, 30(7): 1058-1061. DOI: 10.3901/JME.2008.10.294.
doi: 10.3901/JME.2008.10.294
Niu XR, Gao JP, 2015. Expression for volume change of sulphate saline soil considering salt expansion and frost heave. Chinese Journal of Geotechnical Engineering, 37(4): 755-760. DOI: 10.11779/CJGE201504023.
doi: 10.11779/CJGE201504023
Scherer GW, 1999. Crystallization in pores. Cement & Concrete Research, 29: 1347-1358. DOI: 10.1016/S0008-8846(99)00002-2.
doi: 10.1016/S0008-8846(99)00002-2
Shi ZX, Li B, Jin YC, 1994. An experimental analysis of the expanding regularity and affecting elements on sulphate salty soil. Journal of Xi'an Highway Transportation University, 14(2): 15-21. (in Chinese)
Song QZ, Chen LZ, 2006. Application of artificial neural network to studying salt expansion properties of saline soil. Journal of Glaciology and Geocryology, 28(4): 607-612. DOI: 10.1016/S1001-8042(06)60011-0.
doi: 10.1016/S1001-8042(06)60011-0
Steiger M, 2005. Crystal growth in porous materials—I: the crystallization pressure of large crystals. Journal of Crystal Growth, 282: 455-469. DOI: 10.1016/j.jcrysgro.2005. 05.007.
doi: 10.1016/j.jcrysgro.2005. 05.007
Steiger M, 2005. Crystal growth in porous materials—II: Influence of crystal size on the crystallization pressure. Journal of Crystal Growth, 282: 470-481. DOI: 10.1016/j.jcrysgro.2005.05.008.
doi: 10.1016/j.jcrysgro.2005.05.008
Wan XS, Hu QJ, Liao MK, 2017. Salt crystallization in cold sulfate saline soil. Cold Regions Science and Technology, 137: 36-47. DOI: 10.1016/j.coldregions.2017.02.007.
doi: 10.1016/j.coldregions.2017.02.007
Wang XS, Zhang HQ, Xue M, et al., 2003. Road disease and treatment in saline soil area. Journal of Tongji University, 31(10): 1178-1182. DOI: 10.3321/j.issn:0253-374X.2003.10.009.
doi: 10.3321/j.issn:0253-374X.2003.10.009
Wu AH, Cai LC, Gu QK, 2010. Research on ground treatment of airport with sulfate saline soil by heavy cover replacement technique. Rock and Soil Mechanics, 31(12): 3880-3886. DOI: 10.3969/j.issn.1000-7598.2010.12.030.
doi: 10.3969/j.issn.1000-7598.2010.12.030
Xiao ZA, Lai YM, You ZM, 2017. Experimental study on impact of salt content on deformation characteristics of sodium sulfate soil under freeze-thaw conditions. Chinese Journal of Geotechnical Engineering, 39(5): 953-960. DOI: 10.11779/CJGE201705021.
doi: 10.11779/CJGE201705021
Yue HM, Hang JM, Wen T, et al., 2016. Indoor simulation experiment on heavy cover replacement technique intreatment of coarse sulphate saline soil foundation. Rock and Soil Mechanics, 38(2): 471-486. DOI: 10.16285/j.rsm. 2017.02.021.
doi: 10.16285/j.rsm. 2017.02.021
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!