Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (3): 184193.doi: 10.3724/SP.J.1226.2019.00184.
• • 上一篇
Variation and relationship between soil moisture and environmental factors in the source region of the Yangtze River from 2005 to 2016
LingLing Song1,ZongJie Li2,Qing Tian1(),LieFu Wang4,Jing He1,RuiFeng Yuan3,Juan Gui3,BaiJuan Zhang3,YueMin Lv3
- 1. College of Forestry, Gansu Agricultural University, Lanzhou, Gansu 730070, China
2. Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth Environmental Science, Lanzhou University, Lanzhou, Gansu 730000, China
3. Key Laboratory of Ecohydrology of Inland River Basin Gansu/Hydrology and Water Resources Engineering Research Center, Cold and Arid Region Environment and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
4. Tuotuohe Meteorological Station, Geermu, Qinghai 816099, China
Bubier JL , Frolking S , Crill PM , et al ., 1999. Net ecosystem productivity and its uncertainty in a diverse boreal peatland. Journal of Geophysical Research: Atmospheres, 104(D22): 27683-27692. DOI: org/10.1029/1999JD900219 .
doi: org/10.1029/1999JD900219 |
|
Chen Y , Yang K , Qin J , et al ., 2013. Evaluation of AMSR‐E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 118(10): 4466-4475. DOI: org/10.1002/jgrd.50301 .
doi: org/10.1002/jgrd.50301 |
|
Cheng GD , Zhao L , 2000. The problems in the development of frozen soil in the Tibetan Plateau. Quaternary Research, 20(6): 521-531. DOI: 10.3969/j.issn.1672-3198.2015.21.109 . (in Chinese)
doi: 10.3969/j.issn.1672-3198.2015.21.109 |
|
Cui Y , Long D , Hong Y , et al ., 2016. Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau. Journal of Hydrology, 543: 242-254. DOI: org/10.1016/j.jhydrol.2016. 10.005 .
doi: org/10.1016/j.jhydrol.2016. 10.005 |
|
Fang Y , Qin D , Ding Y , 2011. Frozen soil change and adaptation of animal husbandry: a case of the source regions of Yangtze and Yellow Rivers. Environmental Science & Policy, 14(5): 555-568. DOI: org/10.1016/j.envsci.2011.03.012 .
doi: org/10.1016/j.envsci.2011.03.012 |
|
Fu W , Zhao JQ , Du GZ , 2012. Qinhai-Tibet Plateau alpine grassland ecological compensation mechanism research. Ecological economy, 168(10): 153-157. DOI: 10.3969/j.issn.1671-4407.2012.10.032 . (in Chinese)
doi: 10.3969/j.issn.1671-4407.2012.10.032 |
|
Gao Q , Guo Y , Xu H , et al ., 2016. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Science of the Total Environment, 554: 34-41. DOI: org/10.1016/j.scitotenv.2016.02.131 .
doi: org/10.1016/j.scitotenv.2016.02.131 |
|
Hayashi S , Murakami S , Xu KQ , et al ., 2015. Simulation of the reduction of runoff and sediment load resulting from the Gain for Green Program in the Jialingjiang catchment, upper region of the Yangtze River. Journal of Environmental Management, 149: 126-137. DOI: org/10.1016/j.jenvman.2014.10.004 .
doi: org/10.1016/j.jenvman.2014.10.004 |
|
Hu P , Liu Q , Heslop D , et al ., 2015. Soil moisture balance and magnetic enhancement in loess-paleosol sequences from the Tibetan Plateau and Chinese Loess Plateau. Earth and Planetary Science Letters, 409: 120-132. DOI: org/10. 10 16/j.epsl.2014.10.035 .
doi: org/10. 10 16/j.epsl.2014.10.035 |
|
Li H , Shen W , Zou C , et al ., 2013. Spatio-temporal variability of soil moisture and its effect on vegetation in a desertified aeolian riparian ecotone on the Tibetan Plateau. Journal of Hydrology, 479: 215-225. DOI: org/10. 1016/j.jhydrol. 2012.12.002 .
doi: org/10. 1016/j.jhydrol. 2012.12.002 |
|
Li L , Dai S , Shen HY , et al ., 2012. The response and trend prediction for surface water resources to climate change in the source region of the Yangtze River. Acta Geographica Sinica, 67(7): 941-950. DOI:10.11821/xb201207007 . (in Chinese)
doi: 10.11821/xb201207007 |
|
Li Q , Lu H , Shen C , et al ., 2016. Vegetation successions in response to Holocene climate changes in the central Tibetan Plateau. Journal of Arid Environments, 125: 136-144. DOI: org/10.1016/j.jaridenv.2015.07.010 .
doi: org/10.1016/j.jaridenv.2015.07.010 |
|
Li ZX , Qi F , Xiao YG , et al ., 2015. The evolution and environmental significance of glaciochemistry during the ablation period in the north of Tibetan Plateau, China. Quaternary International, 374: 93-109. DOI: org/10.1016/j.quaint. 2014.06.071 .
doi: org/10.1016/j.quaint. 2014.06.071 |
|
Liu Q , Du JY , Shi JC , et al ., 2013. Analysis of spatial distribution and multi-year trend of the remotely sensed soil moisture on the Tibetan Plateau. Science China Earth Sciences, 56(12): 2173-2185. DOI: 10.1007/s11430-013-4700-8 .
doi: 10.1007/s11430-013-4700-8 |
|
Ma Y , Wang XQ , Zhang B , et al ., 2014. Effects from wind erosion and wind deposition to water and photosynthesis of camel thorn on the southern margin of the Taklimakan desert. Chinese Journal of plant ecology, 38(5): 491-498. DOI: 10.3724/SP.J.1258.2014.00045 . (in Chinese)
doi: 10.3724/SP.J.1258.2014.00045 |
|
McGuire AD , Wirth C , Apps M , et al ., 2002. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes. Journal of Vegetation Science, 13(3): 301-314. DOI: org/10.1111/j.1654-1103. 2002.tb02055.x .
doi: org/10.1111/j.1654-1103. 2002.tb02055.x |
|
Qi DM , Li YQ , Chen YR , et al ., 2015. The variation characteristics and causes analysis of the runoff in the source region of the Yangtze River under the background of climate change. Journal of Glaclology and Geoccryology, 37(4): 1075-1086. DOI: 10.7522/j.issn.1000-0240.2015.0120 . (in Chinese)
doi: 10.7522/j.issn.1000-0240.2015.0120 |
|
Su Z , De RP , Wen J , et al ., 2013. Evaluation of ECMWF's soil moisture analyses using observations on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 118(11): 5304-5318. DOI: org/10.1002/jgrd.50468 .
doi: org/10.1002/jgrd.50468 |
|
Sun S , Chen B , Chen J , et al ., 2016. Comparison of remotely-sensed and modeled soil moisture using CLM4.0 with in situ measurements in the central Tibetan Plateau area. Cold Regions Science and Technology, 129: 31-44. DOI:org/10. 1016/j.coldregions.2016.06.005 .
doi: org/10. 1016/j.coldregions.2016.06.005 |
|
Walker DA , Jia GJ , Epstein HE, et al ., 2003. Vegetation-soil-thaw-depth relationships along a low-arctic bioclimate gradient, Alaska: Synthesis of information from the ATLAS studies. Permafrost and Periglacial Processes, 14(2): 103-123. DOI: org/10.1002/ppp.452 .
doi: org/10.1002/ppp.452 |
|
Wang K , Wang P , Liu J , et al ., 2005. Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the western Tibetan Plateau. Boundary-Layer Meteorology, 116(1): 117-129. DOI: 10.1007/s10546-004-7403-z .
doi: 10.1007/s10546-004-7403-z |
|
Wen J , Su Z , 2003. The estimation of soil moisture from ERS wind scatterometer data over the Tibetan plateau. Physics and Chemistry of the Earth, Parts A/B/C, 28(1): 53-61. DOI: org/10.1016/S1474-7065(03)00007-X .
doi: org/10.1016/S1474-7065(03)00007-X |
|
Wu, QB, Shen YP , Shi B , 2003. The relationship between frozen soil, hydrothermal process and ecological environment for cold region in the Qinghai Tibet Plateau. Journal of Glaciology and Geocryology, 25(3): 250-255. DOI: 10.3969/j.issn.1000-0240.2003.03.002 . (in Chinese)
doi: 10.3969/j.issn.1000-0240.2003.03.002 |
|
Yang Z , Ouyang H , Zhang X , 2011. Spatial variability of soil moisture at typical alpine meadow and steppe sites in the Qinghai-Tibetan Plateau permafrost region. Environmental Earth Sciences, 63(3): 477-488. DOI: 10.1007/s12665-010-0716-y . (in Chinese)
doi: 10.1007/s12665-010-0716-y |
|
Yu G , Brierley G , Huang HQ , et al ., 2014. An environmental gradient of vegetative controls upon channel planform in the source region of the Yangtze and Yellow Rivers. Catena, 119: 143-153. DOI: org/10.1016/j.catena.2014.02.010 .
doi: org/10.1016/j.catena.2014.02.010 |
|
Zeng J , Li Z , Chen Q , et al ., 2015. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sensing of Environment, 163: 91-110. DOI: org/10.1016/j.rse. 2015. 03.008 .
doi: org/10.1016/j.rse. 2015. 03.008 |
|
Zhang Y , Dong S , Gao Q , et al ., 2016. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau. Science of the Total Environment, 562: 353-363. DOI: org/10.1016/j.scitotenv.2016.03.221 .
doi: org/10.1016/j.scitotenv.2016.03.221 |
|
Zhao L , Yang K , Qin J , et al ., 2014. The scale-dependence of SMOS soil moisture accuracy and its improvement through land data assimilation in the central Tibetan Plateau. Remote Sensing of Environment, 152: 345-355. DOI: org/10. 1016/j.rse.2014.07.005 .
doi: org/10. 1016/j.rse.2014.07.005 |
|
Zhu X , Shao M , Zeng C , et al ., 2016. Application of cosmic-ray neutron sensing to monitor soil water content in an alpine meadow ecosystem on the northern Tibetan Plateau. Journal of Hydrology, 536: 247-254. DOI: org/10.1016/j.jhydrol.2016.02.038 .
doi: org/10.1016/j.jhydrol.2016.02.038 |
No related articles found! |
|