Sciences in Cold and Arid Regions ›› 2018, Vol. 10 ›› Issue (2): 151–158.doi: 10.3724/SP.J.1226.2018.00151

• Articles • 上一篇    

Relationship between the haplotype distribution of Artemisia halodendron (Asteraceae) and hydrothermal regions in Horqin Sandy Land, northern China

WenDa Huang1,2, XueYong Zhao1,3, YuLin Li1, YuQiang Li1, YaYong Luo1   

  1. 1. Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China;
    2. Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China;
    3. Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • 收稿日期:2017-03-15 修回日期:2017-07-29 发布日期:2018-11-22
  • 通讯作者: WenDa Huang,huangwenda2008@163.com E-mail:huangwenda2008@163.com
  • 基金资助:
    The authors thank all the members of Naiman Desertification Research Station, China Academy of Sciences (CAS), for their help in the field work. We acknowledge the China Meteorological Administration (Beijing, China) for help on the meteorological data information support. This study was financially supported by research projects 2016YFC0500907, 2017FY100205, 41201561, Y551821001, and 145RJYA269.

Relationship between the haplotype distribution of Artemisia halodendron (Asteraceae) and hydrothermal regions in Horqin Sandy Land, northern China

WenDa Huang1,2, XueYong Zhao1,3, YuLin Li1, YuQiang Li1, YaYong Luo1   

  1. 1. Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China;
    2. Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China;
    3. Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2017-03-15 Revised:2017-07-29 Published:2018-11-22
  • Contact: WenDa Huang,huangwenda2008@163.com E-mail:huangwenda2008@163.com
  • Supported by:
    The authors thank all the members of Naiman Desertification Research Station, China Academy of Sciences (CAS), for their help in the field work. We acknowledge the China Meteorological Administration (Beijing, China) for help on the meteorological data information support. This study was financially supported by research projects 2016YFC0500907, 2017FY100205, 41201561, Y551821001, and 145RJYA269.

摘要: The genetic diversity of Artemisia halodendron (Asteraceae), a constructive and dominant species in Horqin Sandy Land, was investigated to examine the genetic relationships with different hydrothermal regions in Horqin Sandy Land. We sequenced chloroplast DNA (cpDNA) fragments (trnL-F) of 243 plants from 10 populations across the Horqin Sandy Land. The analyses of cpDNA variation identified seven haplotypes. A low level of haplotype diversity (Hd=0.706) and nucleotide diversity (π=0.0013) was detected. Haplotypes clustered into two tentative clades. Low genetic differentiation among regions was consistently indicated by hierarchical analyses of molecular variance (AMOVA). Across the sampled populations, the haplotype distributions were differentiated with hydrothermal gradients.

关键词: Artemisia halodendron, population genetics, chloroplast DNA, trnL-F, Horqin Sandy Land

Abstract: The genetic diversity of Artemisia halodendron (Asteraceae), a constructive and dominant species in Horqin Sandy Land, was investigated to examine the genetic relationships with different hydrothermal regions in Horqin Sandy Land. We sequenced chloroplast DNA (cpDNA) fragments (trnL-F) of 243 plants from 10 populations across the Horqin Sandy Land. The analyses of cpDNA variation identified seven haplotypes. A low level of haplotype diversity (Hd=0.706) and nucleotide diversity (π=0.0013) was detected. Haplotypes clustered into two tentative clades. Low genetic differentiation among regions was consistently indicated by hierarchical analyses of molecular variance (AMOVA). Across the sampled populations, the haplotype distributions were differentiated with hydrothermal gradients.

Key words: Artemisia halodendron, population genetics, chloroplast DNA, trnL-F, Horqin Sandy Land

Bailey HP, 1979. Semi-arid climates: their definition and distribution. In: Hall AE, Cannell GH, Lawton HW (eds.). Agriculture in Semi-Arid Environments Berlin, Heidelberg: Springer, pp. 73–97. DOI: 10.1007/978-3-642-67328-3_3.
Bao HJ, Guo J, Yan L, 2010. Study on ecological footprint of the human activity intensity in Horqin sandy—A case of Naiman Banner. Journal of Arid Land Resources and Environment, 24(2): 126-131, DOI:10.13448/j.cnki.jalre.2010.02.012.
Cao YN, Shi LS, Han S, et al., 2008. Point pattern analysis for a population of Artemisia halodendron in a Kerqin Sandlot. Chinese Bulletin of Botany, 25(4): 437-442, DOI:10.3969/j.issn.1674-3466.2008.04.007.
Chao LM, Piao SJ, Zhi RN, et al., 1999. The distribution patterns of Artemisia halodendron in different sandland types. Journal of Desert Research, 19(S1): 45-48.
Chen FJ, Wang AL, Chen KM, et al., 2009. Genetic diversity and population structure of the endangered and medically important Rheum tanguticum (Polygonaceae) revealed by SSR Markers. Biochemical Systematics and Ecology, 37(5): 613-621, DOI:10.1016/j.bse.2009.08.004.
Dong ZB, Wang XM, Liu LY, 2000. Wind erosion in arid and semiarid China: an overview. Journal of Desert Research, 20(2): 134-139, DOI:10.3321/j.issn:1000-694X.2000.02.007.
Excoffier L, Laval G, Schneider S, 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1: 47-50.
Ge XJ, Hwang CC, Liu ZH, et al., 2011. Conservation genetics and phylogeography of endangered and endemic shrub Tetraena mongolica (Zygophyllaceae) in Inner Mongolia, China. BMC Genetics, 12: 1, DOI:10.1186/1471-2156-12-1.
Hamilton MB, 1999. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology, 8(3): 521-523.
Hu YP, Wang L, Xie XL, et al., 2010. Genetic diversity of wild populations of Rheum tanguticum endemic to China as revealed by ISSR analysis. Biochemical Systematics and Ecology, 38(3): 264-274, DOI:10.1016/j.bse.2010.01.006.
Huang G, Zhao XY, Huang YX, et al., 2009. The root longevity of Artemisia halodendron inhabiting two sandy land habitats. Chinese Journal of Plant Ecology, 33(4): 755-763, DOI:10.3773/j.issn.1005-264x.2009.04.014.
Huang WD, Zhao XY, Zhao X, et al., 2011. A combined approach using ISSR and ITS analysis for the characterization of Artemisia halodendron from Horqin sandy land, northern China. Biochemical Systematics and Ecology, 39(4-6): 346-351, DOI:10.1016/j.bse.2011.04.011.
Huang WD, Zhao XY, Zhao X, et al., 2013. Genetic diversity in Artemisia halodendron (Asteraceae) based on chloroplast DNA psbA-trnH region from different hydrothermal conditions in Horqin sandy land, northern China. Plant Systematics and Evolution, 299: 107-113, DOI:10.1007/s00606-012-0707-4..
Huang WD, Zhao XY, Zhao X, et al., 2014. Relationship between the genetic diversity of Artemisia halodendron and climatic factors. Acta Oecologica, 55: 97-103, DOI:10.1016/j.actao.2013.12.005.
Li FR, Zhang AS, Duan SS, et al., 2005. Patterns of reproductive allocation in Artemisia halodendron inhabiting two contrasting habitats. Acta Oecologica, 28(1): 57-64, DOI:10.1016/j.actao.2005.02.005.
Li FR, Zhao LY, Zhang H, et al., 2004. Wind erosion and airborne dust deposition in farmland during spring in the Horqin Sandy Land of eastern Inner Mongolia, China. Soil and Tillage Research, 75(2): 121-130, DOI:10.1016/j.still.2003.08.001.
Li J, 1991. The distribution of Artemisia halodendron and its status in the natural vegetation succession. Journal of Desert Research, 11(2): 55-60.
Li SG, Harazono Y, Oikawa T, et al., 2000. Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia. Agricultural and Forest Meteorology, 102(2-3): 125-137, DOI:10.1016/S0168-1923(00)00101-5.
Li SG, Harazono Y, Zhao HL, et al., 2002. Micrometeorological changes following establishment of artificially established artemisia vegetation on desertified sandy land in the Horqin Sandy Land, China and their implication on regional environmental change. Journal of Arid Environments, 52(1): 101-119, DOI:10.1006/jare.2001.0983.
Li Y, Wulantuya, 2011. Evaluation on forestry suitability in the Horqin Sandy Land—A case study in Horqinzuoyihouqi Banner. Research of Soil and Water Conservation, 18(6): 236-239, 244.
Li YQ, Zhao HL, Li YL, et al., 2009. Soil nitrogen mineralization and nitrification in different habitats, Horqin sandy land. Journal of Desert Research, 29(3): 438-444.
Librado P, Rozas J, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451-1452, DOI:10.1093/bioinformatics/btp187.
Liu Y, Zhang DY, Yang HL, et al., 2010. Fine-scale genetic structure of Eremosparton songoricum and implication for conservation. Journal of Arid Land, 2(1): 26-32, DOI:10.3724/SP.J.1227.201000026.
Nei M, 1987. Molecular Evolutionary Genetics. New York: Columbia University Press.
Nei M, Li WH, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76(10): 5269-5273.
Sang T, Crawford DJ, Stuessy TF, 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany, 84(8): 1120-1136, DOI:10.2307/2446155.
Swofford DL, 2002. PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4. 0b10. Sunderland, Massachusetts, USA: Sinauer Associates.
Taberlet P, Gielly L, Pautou G, et al., 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 17(5): 1105-1109, DOI:10.1007/BF00037152.
Tamura K, Dudley J, Nei M, et al., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8): 1596-1599, DOI:10.1093/molbev/msm092.
Thompson JD, Plewniak F, Poch O, 1997. A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Research, 27(13): 2682-2690, DOI:10.1093/nar/27.13.2682.
Wang CH, Li SF, Fu CZ, et al., 2009. Molecular genetic structure and evolution in native and colonized populations of the Chinese mitten crab, Eriocheir sinensis. Biological Invasions, 11(2): 389-399, DOI:10.1007/s10530-008-9256-8.
Wang JF, Pan YZ, Gong X, et al., 2011. Chloroplast DNA variation and phylogeography of Ligularia tongolensis (Asteraceae), a species endemic to the Hengduan Mountains region of China. Journal of Systematics and Evolution, 49(2): 108-119, DOI:10.1111/j.1759-6831.2011.00117.x.
Wang T, 2003. Desert and Desertification in China. Shijiazhuang: Hebei Science and Technology Press.
Wang TJ, Li WQ, Zhang SY, et al., 2010. Genetic diversity and differentiation of five natural populations of Artemisia halodendron. Scientia Silvae Sinicae, 46(12): 171-175.
Wright S, 1951. The genetical structure of populations. Annals of Human Genetics, 15(1): 323-354, DOI:10.1111/j.1469-1809.1949.tb02451.x.
Zhang HX, Zhang ML, Wang LN, 2015. Genetic structure and historical demography of Malus sieversii in the Yili Valley and the western mountains of the Junggar Basin, Xinjiang, China. Journal of Arid Land, 7(2): 264-271, DOI:10.1007/s40333-014-0044-2.
Zhao HL, Su YZ, Zhou RL, 2006. Restoration mechanism of degraded vegetation in sandy areas of northern China. Journal of Desert Research, 26(3): 323-328, DOI:10.3321/j.issn:1000-694X.2006.03.001.
Zhao HL, Zhao XY, Zhang TH, 2000. Causes, processes and countermeasures of desertification in the interlocked agro-pasturing area of North China. Journal of Desert Research, 20(S1): 22-28.
Zhao HL, Zhao XY, Zhang TH, et al., 2002. Boundary line on agro-pasture zigzag zone in North China and its problems on eco-environment. Advance in Earth Sciences, 17(5): 739-747, DOI:10.3321/j.issn:1001-8166.2002.05.017.
Zhao HL, Zhao XY, Zhang TH, et al., 2003. Desertification Process and Its Recovery Mechanism in Horqin Sandy Land. Beijing: China Ocean Press.
Zhou GY, Yang LC, Li CL, et al., 2010. Genetic diversity in endangered Notopterygium forbesii Boissieu based on intraspecies sequence variation of chloroplast DNA and implications for conservation. Biochemical Systematics and Ecology, 38(5): 911-916, DOI:10.1016/j.bse.2010.09.012.
Zhou RL, Wang HO, Zhao HL, 1999. Response of protective enzymatic system in desert plants grown in different kinds of dunes to atmosphere dehydration and high temperature. Journal of Desert Research, 19(S1): 49-54.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!