Sciences in Cold and Arid Regions ›› 2018, Vol. 10 ›› Issue (2): 114–125.doi: 10.3724/SP.J.1226.2018.00114

• Articles • 上一篇    

Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data

ZhenMing Wu1,2, Lin Zhao1,2, Lin Liu3, Rui Zhu1,4, ZeShen Gao1, YongPing Qiao1, LiMing Tian1,2, HuaYun Zhou1,4, MeiZhen Xie1,2   

  1. 1. Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China;
    4. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
  • 收稿日期:2017-11-20 修回日期:2018-01-04 发布日期:2018-11-22
  • 通讯作者: Lin Zhao,linzhao@lzb.ac.cn E-mail:linzhao@lzb.ac.cn
  • 基金资助:
    This work was supported by the Innovation Groups of the National Natural Science Foundation of China (41421061), the Chinese Academy of Sciences (KJZD-EW-G03-02), the project of the State Key Laboratory of Cryosphere Science (SKLCS-ZZ- 2017), and CUHK Direct Grant (4053206). The Sentinel-1 SAR data were provided by the European Space Agency (ESA) through Sentinels Scientific Data Hub.

Surface-deformation monitoring in the permafrost regions over the Tibetan Plateau, using Sentinel-1 data

ZhenMing Wu1,2, Lin Zhao1,2, Lin Liu3, Rui Zhu1,4, ZeShen Gao1, YongPing Qiao1, LiMing Tian1,2, HuaYun Zhou1,4, MeiZhen Xie1,2   

  1. 1. Cryosphere Research Station on the Qinghai-Tibetan Plateau, State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China;
    4. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
  • Received:2017-11-20 Revised:2018-01-04 Published:2018-11-22
  • Contact: Lin Zhao,linzhao@lzb.ac.cn E-mail:linzhao@lzb.ac.cn
  • Supported by:
    This work was supported by the Innovation Groups of the National Natural Science Foundation of China (41421061), the Chinese Academy of Sciences (KJZD-EW-G03-02), the project of the State Key Laboratory of Cryosphere Science (SKLCS-ZZ- 2017), and CUHK Direct Grant (4053206). The Sentinel-1 SAR data were provided by the European Space Agency (ESA) through Sentinels Scientific Data Hub.

摘要: Differential Interferometric Synthetic Aperture Radar (D-InSAR) has been widely used to measure surface deformation over the Tibetan Plateau. However, the accuracy and applicability of the D-InSAR method are not well estimated due to the lack of in-situ validation. In this paper, we mapped the seasonal and long-term displacement of Tanggula (TGL) and Liangdaohe (LDH) permafrost regions with a stack of Sentinel-1 acquisitions using the Small Baseline Subset InSAR (SBAS-InSAR) method. In the TGL region, with its dry soils and sparse vegetation, the InSAR-derived surface-deformation trend was consistent with ground-based leveling results; long-term changes of the active layer showed a settlement rate of around 1 to 3 mm/a due to the melting of ground ice, indicating a degrading permafrost in this area. Around half of the deformation was picked up on monitoring, in contrast with in-situ measurements in LDH, implying that the D-InSAR method remarkably underestimated the surface-deformation. This phenomenon may be induced by the large soil-water content, high vegetation coverage, or a combination of these two factors in this region. This study demonstrates that surface deformation could be mapped accurately for a specific region with Sentinel-1 C-band data, such as in the TGL region. Moreover, although the D-InSAR technology provides an efficient solution for broad surface-deformation monitoring in permafrost regions, it shows a poor performance in the region with high soil-water content and dense vegetation coverage.

关键词: deformation, permafrost, SBAS-InSAR, leveling, Sentinel-1, Tibetan Plateau

Abstract: Differential Interferometric Synthetic Aperture Radar (D-InSAR) has been widely used to measure surface deformation over the Tibetan Plateau. However, the accuracy and applicability of the D-InSAR method are not well estimated due to the lack of in-situ validation. In this paper, we mapped the seasonal and long-term displacement of Tanggula (TGL) and Liangdaohe (LDH) permafrost regions with a stack of Sentinel-1 acquisitions using the Small Baseline Subset InSAR (SBAS-InSAR) method. In the TGL region, with its dry soils and sparse vegetation, the InSAR-derived surface-deformation trend was consistent with ground-based leveling results; long-term changes of the active layer showed a settlement rate of around 1 to 3 mm/a due to the melting of ground ice, indicating a degrading permafrost in this area. Around half of the deformation was picked up on monitoring, in contrast with in-situ measurements in LDH, implying that the D-InSAR method remarkably underestimated the surface-deformation. This phenomenon may be induced by the large soil-water content, high vegetation coverage, or a combination of these two factors in this region. This study demonstrates that surface deformation could be mapped accurately for a specific region with Sentinel-1 C-band data, such as in the TGL region. Moreover, although the D-InSAR technology provides an efficient solution for broad surface-deformation monitoring in permafrost regions, it shows a poor performance in the region with high soil-water content and dense vegetation coverage.

Key words: deformation, permafrost, SBAS-InSAR, leveling, Sentinel-1, Tibetan Plateau

Agram P, Jolivet R, Simons M, et al., 2012. GIAnT-generic InSAR analysis toolbox. American Geophysical Union, G43A-0897.
Agram PS, Jolivet R, Riel B, et al., 2013. New radar interferometric time series analysis toolbox released. EOS Transactions American Geophysical Union, 94(7): 69-70, DOI:10.1002/2013EO070001.
Baker THW, Davis JL, Hayhoe HN, et al., 1982. Locating the frozen-unfrozen interface in soils using time-domain reflectometry. Canadian Geotechnical Journal, 19(4): 511-517, DOI:10.1139/t82-056.
Berardino P, Fornaro G, Lanari R, et al., 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375-2383, DOI:10.1109/Tgrs.2002.803792.
Brown J, Hinkel KM, Nelson FE, 2000. The circumpolar active layer monitoring (CALM) program: Research designs and initial results. Polar Geography, 24(3): 166-258, DOI:10.1080/10889370009377698.
Castañeda C, Gutiérrez F, Manunta M, et al., 2009. DInSAR measurements of ground deformation by sinkholes, mining subsidence, and landslides, Ebro River, Spain. Earth Surface Processes and Landforms, 34(11): 1562-1574, DOI:10.1002/esp.1848.
Chen FL, Lin H, Zhou W, et al., 2013. Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China. Remote Sensing of Environment, 138: 10-18, DOI:10.1016/j.rse.2013.07.006.
Cheng KT, 1982. The forming process of thick layered ground ice. Science China Chemistry, 25(7): 777-788, DOI:10.1360/yb1982-25-7-777.
Cheng GD, Wu TH, 2007. Responses of permafrost to climate change and their environmental significance, Qinghai Tibet Plateau. Journal of Geophysical Research: Earth Surface, 112(F2): F05S03, DOI:10.1029/2006jf000631.
Daout S, Doin MP, Peltzer G, et al., 2017. Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau. Geophysical Research Letters, 44(2): 901-909, DOI:10.1002/2016gl070781.
European Space Agency, 2013. Sentinel-1 User Handbook (2013-09-01)[2018-02-11]. https://earth.esa.int/documents/247904/685163/ Sentinel-1_User_Handbook.
Farr TG, Rosen PA, Caro E, et al., 2007. The shuttle radar topography mission. Reviews of Geophysics, 45(2): RG2004, DOI:10.1029/2005rg000183.
Ferretti A, Prati C, Rocca F, 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2202-2212, DOI:10.1109/36.868878.
Goldstein RM, Werner CL, 1998. Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25(21): 4035-4038, DOI:10.1029/1998gl900033.
Harris AR, 1970. Direct Reading Frost Gage is Reliable, Inexpensive. Research Note NC-89 Paul, MN: Forest Service, North Central Forest Experiment Station.
Hinzman LD, Kane DL, Gieck RE, et al., 1991. Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Regions Science and Technology, 19(2): 95-110, DOI:10.1016/0165-232x(91)90001-W.
Hu GJ, Zhao L, Wu XD, et al., 2015. Modeling permafrost properties in the Qinghai-Xizang (Tibet) Plateau. Science China Earth Sciences, 58(12): 2309-2326, DOI:10.1007/s11430-015-5197-0.
Jiao YL, Li R, Zhao L, et al., 2014. Processes of soil thawing-freezing and features of soil moisture migration in the permafrost active layer. Journal of Glaciology and Geocryology, 36(2): 237-247, DOI:10.7522/j.issn.1000-0240.2014.0030.
Kane DL, Hinzman LD, Zarling JP, 1991. Thermal response of the active layer to climatic warming in a permafrost environment. Cold Regions Science and Technology, 19(2): 111-122, DOI:10.1016/0165-232x(91)90002-X.
Li Z, Li XW, Liu YZ, et al., 2004. Detecting the displacement field of thaw settlement by means of SAR interferometry. Journal of Glaciology and Geocryology, 26(4): 389-396, DOI:10.3969/j.issn.1000-0240.2004.04.003.
Little JD, Sandall H, Walegur MT, et al., 2003. Application of differential global positioning systems to monitor frost heave and thaw settlement in tundra environments. Permafrost and Periglacial Processes, 14(4): 349-357, DOI:10.1002/ppp.466.
Liu L, Zhang TJ, Wahr J, 2010. InSAR measurements of surface deformation over permafrost on the North Slope of Alaska. Journal of Geophysical Research: Earth Surface, 115(F3): F03023, DOI:10.1029/2009jf001547.
Liu L, Schaefer K, Zhang TJ, et al., 2012. Estimating 1992-2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence. Journal of Geophysical Research: Earth Surface, 117(F1): F01005, DOI:10.1029/2011JF002041.
Liu XD, Chen BD, 2000. Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20(14): 1729-1742, DOI:10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.
Mackay JR, 1973a. A frost tube for the determination of freezing in the active layer above permafrost. Canadian Geotechnical Journal, 10(3): 392-396, DOI:10.1139/t73-033.
Mackay JR, 1973b. The growth of Pingos, western arctic coast, Canada. Canadian Journal of Earth Sciences, 10(6): 979-1004, DOI:10.1139/e73-086.
Mackay JR, 1977. Pulsating pingos, Tuktoyaktuk Peninsula, N. W. T. Canadian Journal of Earth Sciences, 14(2): 209-222, DOI:10.1139/e77-023.
Mackay JR, 1983. Downward water movement into frozen ground, western arctic coast, Canada. Canadian Journal of Earth Sciences, 20(1): 120-134, DOI:10.1139/e83-012.
Mark Nixon F, Taylor AE, 1998. Regional active layer monitoring across the sporadic, discontinuous and continuous permafrost zones, Mackenzie Valley, northwestern Canada. Proceedings of the 1998 Seventh International Conference on Permafrost. Canada, Yellowknife: Collection Nordicana, 815–820.
Morrison K, Bennett JC, Nolan M, et al., 2011. Laboratory measurement of the DInSAR response to spatiotemporal variations in soil moisture. IEEE Transactions on Geoscience and Remote Sensing, 49(10): 3815-3823, DOI:10.1109/Tgrs.2011.2132137.
Qin YH, Wu TH, Li R, et al., 2016. Using ERA-Interim reanalysis dataset to assess the changes of ground surface freezing and thawing condition on the Qinghai-Tibet Plateau. Environmental Earth Sciences, 75(9): 1-13, DOI:10.1007/s12665-016-5633-2.
Rosen PA, Gurrola E, Sacco GF, et al., 2012. The InSAR scientific computing environment. Proceedings of the 9th European Conference on Synthetic Aperture Radar. Nuremberg, Germany: VDE-Association for Electrical, Electronics and Information Technologies, 730–733.
Short N, LeBlanc AM, Sladen W, et al., 2014. RADARSAT-2 D-InSAR for ground displacement in permafrost terrain, validation from Iqaluit Airport, Baffin Island, Canada. Remote Sensing of Environment, 141: 40-51, DOI:10.1016/j.rse.2013.10.016.
Usai S, 2001. A New Approach for Longterm Monitoring of Deformations by Differential SAR Interferometry. Delft, Holland: Delft University Press.
Warren R, Brown J, 1972. The performance of a frost-tube for the determination of soil freezing and thawing depths. Soil Science, 113(2): 149-154.
Wu QB, Zhang TJ, Liu YZ, 2010. Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Global and Planetary Change, 72(1-2): 32-38, DOI:10.1016/j.gloplacha.2010.03.001.
Xie C, Li Z, Xu J, et al., 2010. Analysis of deformation over permafrost regions of Qinghai-Tibet plateau based on permanent scatterers. International Journal of Remote Sensing, 31(8): 1995-2008, DOI:10.1080/01431160902929255.
Yang YH, Zhu BZ, Jiang FQ, et al., 2012. Prevention and management of wind-blown sand damage along Qinghai-Tibet Railway in Cuonahu Lake area. Sciences in Cold and Arid Regions, 4(2): 132-139, DOI:10.3724/SP.J.1226.2012.00132.
Zebker HA, Rosen PA, Hensley S, 1997. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of Geophysical Research: Solid Earth, 102(B4): 7547-7563, DOI:10.1029/96jb03804.
Zhang T, Osterkamp TE, Stamnes K, 1997. Effects of climate on the active layer and permafrost on the north slope of Alaska, USA. Permafrost and Periglacial Processes, 8(1): 45-67, DOI:10.1002/(SICI)1099-1530(199701)8:1<45::AID-PPP240>3.0.CO;2-K.
Zhao L, Cheng GD, Li SX, et al., 2000. Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau. Chinese Science Bulletin, 45(23): 2181-2187, DOI:10.1007/Bf02886326.
Zhao L, Ping CL, Yang DQ, et al., 2004. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang(Tibetan) Plateau, China. Global and Planetary Change, 43(1-2): 19-31, DOI:10.1016/j.gloplacha.2004.02.003.
Zorigt M, Kwadijk J, Van Beek E, et al., 2016. Estimating thawing depths and mean annual ground temperatures in the Khuvsgul region of Mongolia. Environmental Earth Sciences, 75: 897, DOI:10.1007/s12665-016-5687-1.
Zwieback S, Hajnsek I, 2016. Influence of vegetation growth on the polarimetric zero-baseline DinSAR phase diversity-implications for deformation studies. IEEE Transactions on Geoscience and Remote Sensing, 54(5): 3070-3082, DOI:10.1109/Tgrs.2015.2511118.
[1] HeWen Niu, XiaoFei Shi, Gang Li, JunHua Yang, ShiJin Wang. Characteristics of total suspended particulates in the atmosphere of Yulong Snow Mountain, southwestern China[J]. Sciences in Cold and Arid Regions, 2018, 10(3): 207-218.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!