Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (2): 150–166.doi: 10.3724/SP.J.1226.2021.20050

• • 上一篇    

  

  • 收稿日期:2020-06-10 接受日期:2020-09-13 出版日期:2021-04-30 发布日期:2021-05-11

A nonlinear interface structural damage model between ice crystal and frozen clay soil

Sheng Shi1,Feng Zhang1,2(),KangWei Tang1,DeCheng Feng1(),XuFeng Lu1   

  1. 1.School of Transportation Science and Engineering, Harbin Institute of Technology, Heilongjiang, Harbin 150090, China
    2.State Key Laboratory of Road Engineering Safety and Health in Cold and High-Altitude Regions, CCCC First Highway Consultants Co. , Ltd. , Xi'an 710075, China
  • Received:2020-06-10 Accepted:2020-09-13 Online:2021-04-30 Published:2021-05-11
  • Contact: Feng Zhang,DeCheng Feng E-mail:zhangf@hit.edu.cn

Abstract:

The shear properties of ice-frozen soil interface are important when studying the constitutive model of frozen soil and slope stability in cold regions. In this research, a series of cryogenic direct shear tests for ice-frozen clay soil interface were conducted. Based on experimental results, a nonlinear interface structural damage model is proposed to describe the shear properties of ice-frozen clay soil interface. Firstly, the cementation and friction structural properties of frozen soil materials were analyzed, and a structural parameter of the ice-frozen clay soil interface is proposed based on the cryogenic direct shear test results. Secondly, a structural coefficient ratio is proposed to describe the structural development degree of ice-frozen clay soil interface under load, which is able to normalize the shear stress of ice-frozen clay soil interface, and the normalized data can be described by the Duncan-Chang model. Finally, the tangent stiffness of ice-frozen clay soil interface is calculated, which can be applied to the mechanics analysis of frozen soil. Also, the shear stress of ice-frozen clay soil interface calculated by the proposed model is compared with test results.

Key words: ice-frozen clay soil interface, cryogenic direct shear test, structural coefficient ratio, shear tangent stiffness, cementation

"

"

Test samplesTest conditionsInitial moisture contentInitial void ratioNormal stress (kPa)
Ice-dry clay soil interfaceCase I-1.050, 100, 200
-0.850, 100, 200
-0.650, 100, 200
Ice-frozen clay soil interfaceCase I14%1.050, 100, 200
14%0.850, 100, 200
14%0.650, 100, 200
Ice-frozen clay soil interfaceCase II16%1.050, 100, 200
16%0.850, 100, 200
16%0.650, 100, 200
Ice-frozen clay soil interfaceCase III18%1.050, 100, 200
18%0.850, 100, 200
18%0.650, 100, 200

"

"

"

"

"

"

"

"

"

"

"

Initial moisture contentInitial void ratioParameters under different normal stresses (kPa)
αβχ
50 100 20050 100 20050 100 200
14%1.00.061 0.040 0.0590.092 0.293 0.4080.162 0.132 0.0908
0.80.135 0.120 0.1250.194 0.266 0.3160.088 0.116 0.102
0.60.105 0.139 0.1080.224 0.242 0.3720.066 0.074 0.075
16%1.00.140 0.078 0.0440.042 0.372 0.5040.159 0.049 0.036
0.80.075 0.183 0.3260.152 0.157 0.1350.030 0.082 0.121
0.60.147 0.177 0.2460.187 0.200 0.1670.034 0.036 0.053
18%1.00.145 0.179 0.0990.043 0.099 0.2470.133 0.139 0.109
0.80.070 0.159 0.3320.240 0.245 0.1780.019 0.037 0.057
0.60.063 0.032 0.0500.140 0.200 0.2800.044 0.037 0.028

"

Initial moisture contentInitial void ratiom0mb
50 kPa100 kPa200 kPa50 kPa100 kPa200 kPa
14%1.03.392.291.861.021.031.07
0.82.442.011.831.331.151.11
0.62.712.251.851.821.461.22
16%1.03.091.752.021.111.401.49
0.83.372.572.152.551.551.18
0.63.142.972.632.352.272.07
18%1.02.982.292.221.161.161.11
0.83.312.742.362.631.971.78
0.64.193.752.922.502.362.26

"

"

"

"

e0σn (kPa)τf (kPa)Ei (kPa)τult (kPa)RfφfKn
1.05078.156.2113.90.73620.7°26.00.68
100110.1102.1149.5
200144.7159.5184.2
0.85080.275.0106.80.76024.6°56.50.89
100163.6186.6206.6
200223.5196.9303.1
0.650100.891.5134.40.76426.1°63.00.96
100152.3143.7198.4
200246.9255.8318.5

"

"

"

Ali N, Mahzad EF, Hooshang K, et al., 2018. A new approach to modeling the behavior of frozen soils. Engineering Geology, 246: 82-90. DOI: https://doi.org/10.1016/j.enggeo. 2018.09.018.
doi: 10.1016/j.enggeo. 2018.09.018
Arenson LU, Springman SM, 2005. Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0 ℃. Canadian Geotechnical Journal, 42(2): 431-442. DOI: https://doi.org/10.1139/t04-109.
doi: 10.1139/t04-109
ASTM, 1998. Standard test method for direct shear test of soils under consolidated drained conditions. ASTM Standard D3080-98.
Bondarenko GI, Sadovskii AV, 1975. Strength and deformability of frozen soil in contact with rock. Soil Mechanics and Foundation Engineering, 12(3): 174-178.
Bray MT, French HM, Shur Y, 2006. Further cryostratigraphic observations in the CRREL Permafrost Tunnel, Fox, Alaska. Permafrost and Periglacial Processes, 17: 233-243. DOI: https://doi.org/10.1002/ppp.558.
doi: 10.1002/ppp.558
Bray MT, 2012. The influence of cryostructure on the creep behavior of ice-rich permafrost. Cold Regions Science and Technology, (79-80): 43-52. DOI: https://doi.org/10.1016/j.coldregions.2012.04.003.
doi: 10.1016/j.coldregions.2012.04.003
Chen SS, Zang SY, Sun L, 2020. Characteristics of permafrost degradation in Northeast China and its ecological effects: A review. Sciences in Cold and Arid Regions, 12(1): 1-11. DOI: https://doi.10.3724/SP.J.1226.2020.00001.
doi: https://doi.10.3724/SP.J.1226.2020.00001
Cudmani R, 2006. An elastic-viscoplastic model for frozen soils. Numerical Modelling of Construction Processes in Geotechnical Engineering for Urban Environment. Taylor & Francis Group, London, pp. 177-183.
Di Donna A, Ferrari A, Laloui L, 2015. Experimental investigations of the soil-concrete interface: physical mechanisms, cyclic mobilization, and behavior at different temperatures. Canadian Geotechnical Journal, 53(4): 659-672. DOI: https://doi.10.1139/cgj-2015-0294.
doi: https://doi.10.1139/cgj-2015-0294
French H, Shur Y, 2010. The principles of cryostratigraphy. Earth-Science Reviews, 101: 190-206. DOI: https://doi.org/10.1016/j.earscirev.2010.04.002.
doi: 10.1016/j.earscirev.2010.04.002
Lai YM, Li SY, Qi JL, 2008. Strength distributions of warm frozen clay and its stochastic damage constitutive model. Cold Regions Science and Technology, 53(2): 200-215. DOI: https://doi.org/10.1016/j.coldregions.2007.11.001.
doi: 10.1016/j.coldregions.2007.11.001
Lai YM, Jin L, Chang XX, 2009. Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil. International Journal of Plasticity, 25: 1177-1205. DOI: https://doi.org/10.1016/j.ijplas.2008.06.010.
doi: 10.1016/j.ijplas.2008.06.010
Lai YM, Li JB, Li QZ, 2012. Study on damage statistical constitutive model and stochastic simulation for warm ice-rich frozen silt. Cold Regions Science and Technology, 71: 102-110. DOI: https://doi.org/10.1016/j.coldregions.2011. 11.001.
doi: 10.1016/j.coldregions.2011. 11.001
Lai Y, Xu X, Yu W, 2014. An experimental investigation of the mechanical behavior and a hyperplastic constitutive model of frozen loess. International Journal of Engineering Science, 84: 29-53. DOI: https://doi.org/10.1016/j.ijengsci. 2014.06.011.
doi: 10.1016/j.ijengsci. 2014.06.011
Lai Y, Liao M, Hu K, 2016. A constitutive model of frozen saline sandy soil based on energy dissipation theory. International Journal of Plasticity, 78: 84-113. DOI: https://doi.org/10. 1016/j.ijplas.2015.10.008.
doi: 10. 1016/j.ijplas.2015.10.008
Ladanyi B, 1995. Frozen soil-structure interfaces. Studies in Applied Mechanics, 42(6): 3-33. DOI: https://doi.org/10. 1016/S0922-5382(06)80004-8.
doi: 10. 1016/S0922-5382(06)80004-8
Li SY, Lai YM, Zhang SJ, 2009. An improved statistical damage constitutive model for warm frozen clay based on Mohr-coulomb criterion. Cold Regions Science and Technology, 57(2): 154-159. DOI: https://doi.org/10.1016/j.coldregions.2009.02.010.
doi: 10.1016/j.coldregions.2009.02.010
Li SY, Niu FJ, Lai YM, et al., 2017. Optimal design of thermal insulation layer of a tunnel in permafrost regions based on coupled heat-water simulation. Applied Thermal Engineering, 110: 1264-1273. DOI: https://doi.org/10.1016/j.applthermaleng.2016.09.033.
doi: 10.1016/j.applthermaleng.2016.09.033
Liu EL, Lai YM, Liao MK, et al., 2016. Fatigue and damage properties of frozen silty sand samples subjected to cyclic triaxial loading. Canadian Geotechnical Journal, 53: 1939-1951. DOI: https://doi.org/10.1139/cgj-2016-0152.
doi: 10.1139/cgj-2016-0152
Liu J, Lv P, Cui Y, 2014. Experimental study on direct shear behavior of frozen soil-concrete interface. Cold Regions Science and Technology, (104-105): 1-6. DOI: https://doi.org/10. 1016/j.coldregions.2014.04.007.
doi: 10. 1016/j.coldregions.2014.04.007
Ma W, Cheng GD, Wu QB, et al., 2005. Application on idea of dynamic design in Qinghai-Tibet railway construction. Cold Regions Science and Technology, 41: 165-173. DOI: https://doi.org/10.1016/j.coldregions.2004.09.002.
doi: 10.1016/j.coldregions.2004.09.002
Murphy KD, McCartney JS, 2014. Thermal borehole shear device. Geotechnical Testing Journal, 37(6): 20140009. DOI: https://doi.10.1520/GTJ20140009.
doi: https://doi.10.1520/GTJ20140009
Rotta LAF, Frigo B, Chiaia B, 2017. A non-linear constitutive model for describing the mechanical behavior of frozen ground and permafrost. Cold Regions Science and Technology, 133: 63-69. DOI: https://doi.org/10.1016/j.coldregions.2016.10.010.
doi: 10.1016/j.coldregions.2016.10.010
Sayles FH, 1973. Triaxial and creep tests on frozen Ottawa sand. Proceeding of 2nd International Permafrost Conference. Washington, D.C: National Academy of Sciences, pp. 384-391.
Shur YL, Jorgenson MT, 1998. Cryostructure development on the floodplains of Colville River Delta, Northern Alaska. Permafrost. Proceedings of 7th International Conference, Yellowknife, Canada, pp. 993-999.
Wang S, Qi J, Yin Z, 2014. A simple rheological element based creep model for frozen soils. Cold Regions Science and Technology, (106-107): 47-54. DOI: https://doi.org/10. 1016/j.coldregions.2014.06.007.
doi: 10. 1016/j.coldregions.2014.06.007
Yamamoto Y, Springman SM, 2014. Axial compression stress path tests on artificial frozen soil samples in a triaxial device at temperatures just below 0 ℃. Canadian Geotechnical Journal, 51(10): 1178-1195. DOI: https://doi.10.1139/cgj-2013-0257.
doi: https://doi.10.1139/cgj-2013-0257
Yazdani S, Helwany S, Olgun G, 2019. Influence of temperature on soil-pile interface shear strength. Geomechanics for Energy and the Environment, 18: 69-78. DOI: https://doi.org/10.1016/j.gete.2018.08.001.
doi: 10.1016/j.gete.2018.08.001
Yang Y, Lai Y, Chang X, 2010. Experimental and theoretical studies on the creep behavior of warm ice-rich frozen sand. Cold Regions Science and Technology, 63(1): 61-67. DOI: https://doi.org/10.1016/j.coldregions.2010.04.011.
doi: 10.1016/j.coldregions.2010.04.011
Yang Y, Gao F, Cheng H, 2014. Researches on the constitutive models of artificial frozen silt in underground engineering. Advances in Materials Science and Engineering, 17: 1-8. DOI: https://doi.10.1155/2014/902164.
doi: https://doi.10.1155/2014/902164
Zhang D, Liu EL, 2019. Binary-medium-based constitutive model of frozen soils subjected to triaxial loading. Results in Physics, 12: 1999-2008. DOI: https://doi.org/10.1016/j.rinp.2019.02.029.
doi: 10.1016/j.rinp.2019.02.029
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!