Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (4): 299–313.doi: 10.3724/SP.J.1226.2021.20024.

• • 上一篇    

  

  • 收稿日期:2020-07-11 接受日期:2021-01-19 出版日期:2021-08-31 发布日期:2021-08-19

Ground temperature variation and its response to climate change on the northern Tibetan Plateau

GuoNing Wan,MeiXue Yang(),XueJia Wang   

  1. Yulong Snow Mountain National Field Observation and Research Station for Cryosphere and Sustainable Development, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2020-07-11 Accepted:2021-01-19 Online:2021-08-31 Published:2021-08-19
  • Contact: MeiXue Yang E-mail:mxyang@lzb.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(41771068);the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)(XDA20100102);the Chinese Academy of Sciences (CAS) "Light of West China" Program, the Youth Innovation Promotion Association CAS(2018460);the Program of China Scholarship Council(201804910129)

Abstract:

Ground temperature plays a significant role in the interaction between the land surface and atmosphere on the Tibetan Plateau (TP). Under the background of temperature warming, the TP has witnessed an accelerated warming trend in frozen ground temperature, an increasing active layer thickness, and the melting of underground ice. Based on high-resolution ground temperature data observed from 1997 to 2012 on the northern TP, the trend of ground temperature at each observation site and its response to climate change were analyzed. The results showed that while the ground temperature at different soil depths showed a strong warming trend over the observation period, the warming in winter is more significant than that in summer. The warming rate of daily minimum ground temperature was greater than that of daily maximum ground temperature at the TTH and MS3608 sites. During the study period, thawing occurred earlier, whereas freezing happened later, resulting in shortened freezing season and a thinner frozen layer at the BJ site. And a zero-curtain effect develops when the soil begins to thaw or freeze in spring and autumn. From 1997 to 2012, the average summer air temperature and precipitation in summer and winter from six meteorological stations along the Qinghai-Tibet highway also demonstrated an increasing trend, with a more significant temperature increase in winter than in summer. The ground temperature showed an obvious response to air temperature warming, but the trend varied significantly with soil depths due to soil heterogeneity.

Key words: ground temperature, soil freezing-thawing processes, the Tibetan Plateau, climate change

"

"

"

"

"

YearSoil depth (cm)
420406080100130160
200113513813713712513012667
200212412913412910312011741
200313413913112499115101-
20041271341171139311382-
20051251351291279912669-

"

"

JJA0 cm4 cm20 cm40 cm60 cm80 cm100 cm130 cm160 cm180 cm
19989.99.58.26.85.43.72.71.30.4-0.1
19998.67.76.65.64.43.22.31.10.30.0
2000**********
2001**********
2002**********
20037.87.36.14.93.62.51.70.6-0.2-0.4
20048.17.66.45.24.02.82.00.80.0-0.3
20057.68.06.45.03.62.41.60.5-0.2-0.4
2006**********
20078.88.57.25.84.43.12.20.90.1-0.2
20087.98.16.85.44.02.82.00.7-0.1-0.3
2009**********
2010**6.65.23.82.61.70.6-0.2-0.4
2011**6.04.73.42.21.50.4-0.3-0.5
2012**7.55.94.43.02.10.8-0.1-0.4
DJF0 cm4 cm20 cm40 cm60 cm80 cm100 cm130 cm160 cm180 cm
1998-7.6-7.2-6.6-5.0-4.0-3.1-2.5-1.3-0.5-0.3
1999-10.8-10.0-9.5-7.5-6.4-5.4-4.6-3.0-1.9-1.3
2000**********
2001**********
2002**********
2003-10.5-10.1-9.4-7.7-6.7-5.6-4.8-3.3-2.3-1.7
2004-11.1-11.0-10.2-8.3-7.2-6.1-5.3-3.7-2.6-1.9
2005-10.9-11.1-10.0-8.2-7.1-6.1-5.3-3.7-2.7-2.0
2006**********
2007-10.7-10.6-9.6-7.8-6.6-5.5-4.6-3.0-2.0-1.4
2008-10.8-11.2-9.8-7.9-6.7-5.6-4.7-3.1-2.1-1.4
2009-10.0-10.2********
2010**-9.6-7.9-6.9-5.8-4.9-3.4-2.4-1.7
2011**-9.8-8.0-6.9-5.8-5.0-3.5-2.5-1.8

"

"

"

Chen R, Yang MX, Wang XJ, et al., 2019. Review on simulation of land-surface processes on the Tibetan Plateau. Sciences in Cold and Arid Regions, 11(2): 93-115. DOI: 10. 3724/SP.J.1226.2019.00093.
doi: 10. 3724/SP.J.1226.2019.00093
Cheng GD, Wang SL, 1982. On the zonation of high-altitude permafrost in China. Journal of Glaciology and Geocryology, 4(2): 1-17. (in Chinese)
Cheng GD, Wu TH, 2007. Responses of permafrost to climate change and their environmental significant, Qinghai-Tibet Plateau. Journal of Geophysical Research, 112: F02S03. DOI: 10.1029/2006JF000631.
doi: 10.1029/2006JF000631
Chow KC, Chan JC, Shi XL, et al., 2008. Time-lagged effects of spring Tibetan Plateau soil moisture on the monsoon over China in early summer. International Journal of Climatology, 28: 55-67. DOI: 10.1002/joc.1511.
doi: 10.1002/joc.1511
Ding YJ, Ye BS, Liu SY, et al., 2000. Monitoring of frozen soil hydrology in macro-scale in Qinghai-Xizang plateau. Chinese Science Bulletin, 45: 1143-1149. DOI: CNKI:SUN:JXTW.0.2000-12-016.
doi: CNKI:SUN:JXTW.0.2000-12-016
Ge SM, McKenzie J, Voss C, et al., 2011. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation. Geophysical Research Letters, 38: L14402. DOI: 10.1029/2011GL047911.
doi: 10.1029/2011GL047911
Guglielmin M, Balks MR, Adlam LS, et al., 2011. Permafrost Thermal Regime from Two 30-m Deep Boreholes in Southern Victoria Land, Antarctica. Permafrost and Periglacial Processes, 22: 129-139. DOI: 10.1002/ppp.715.
doi: 10.1002/ppp.715
Guo DL, Yang MX, Wang HJ, 2011a. Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau. Hydrological Processes, 25(16): 2531-2541. DOI: 10.1002/hyp.8025.
doi: 10.1002/hyp.8025
Guo DL, Yang MX, Wang HJ, 2011b. Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau. Environmental Earth Sciences, 63: 97-107. DOI: 10.1007/s12665-010-0672-6.
doi: 10.1007/s12665-010-0672-6
Guo DL, Wang HI, Li D, 2012. A projection of permafrost degradation on the Tibetan Plateau during the 21st century. Journal of Geophysical Research, 117: D05106. DOI: 10.1029/2011JD016545.
doi: 10.1029/2011JD016545
Guo DL, Wang AH, Li D, et al., 2018. Simulation of changes in the near-surface soil freeze/thaw cycle using CLM4.5 with four atmospheric forcing data sets. Journal of Geophysical Research, 123: 2509-2523. DOI: 10.1002/2017JD028097.
doi: 10.1002/2017JD028097
Hao X, 2008. A green fervor sweeps the Qinghai-Tibetan Plateau. Science, 321(5889): 633-635. DOI: 10.1126/science. 321.5889.633.
doi: 10.1126/science. 321.5889.633
Harris C, Kern LM, Christiansen HH, et al., 2011. The role of interannual climate variability in controlling solifluction processes, Endalen, Svalbard. Permafrost and Periglacial Processes, 22: 239-253. DOI: 10.1002/ppp.727.
doi: 10.1002/ppp.727
Harris C, Mühll DV, Isaksen K, et al., 2003. Warming permafrost in European mountains. Global and Planetary Change, 39(3-4): 215-225. DOI: 10.1016/j.gloplacha.2003.04.001.
doi: 10.1016/j.gloplacha.2003.04.001
Immerzeel WW, van Beek LH, Bierkens MP, 2010. Climate change will affect the Asian Water Towers. Science, 328: 1382-1385. DOI:10.1126/science.1183188.
doi: 10.1126/science.1183188
Kang SC, Xu YW, You QL, et al., 2010. Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 5: 015101. DOI: 10.1088/1748-9326/5/1/015101.
doi: 10.1088/1748-9326/5/1/015101
Lawrence DM, Slater AG, 2005. A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters,32(L24401): 1-5. DOI: 10. 1029/2005GL025080.
doi: 10. 1029/2005GL025080
Li X, Cheng GD, Jin HJ, 2008. Cryospheric change in China. Global and Planetary Change, 62(3-4): 210-218. DOI: 10.1016/j.gloplacha.2008.02.001.
doi: 10.1016/j.gloplacha.2008.02.001
Luo DL, Jin HJ, Wu QB, et al., 2018. Thermal regime of warm-dry permafrost in relation to ground surface temperature in the Source Areas of the Yangtze and Yellow rivers on the Qinghai-Tibet Plateau, SW China. Science of The Total Environment, 618: 1033-1045. DOI: 10.1016/j.scitotenv.2017.09.083.
doi: 10.1016/j.scitotenv.2017.09.083
Mu CC, Zhang TJ, Zhang XK, et al., 2016. Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau. Journal of Geophysical Research, 121: 1781-1791. DOI: 10.1002/2015JG003235.
doi: 10.1002/2015JG003235
Mu CC, Zhang TJ, Zhao Q, et al., 2017. Permafrost affects carbon exchange and its response to experimental warming on the northern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 247: 252-259. DOI: 10.1016/j.agrformet.2017.08.009.
doi: 10.1016/j.agrformet.2017.08.009
Nan ZT, Li SX, Cheng GD, 2005. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years. Science China Earth Sciences, 48: 797-804. DOI: 10. 1360/03yd0258.
doi: 10. 1360/03yd0258
Nelson FE, 2003. (Un)frozen in Time. Science, 299(5614): 1673-1675. DOI: 10.1126/science.1081111.
doi: 10.1126/science.1081111
Oelke C, Zhang TJ, 2007. Modeling the active-layer depth over the Tibetan plateau. Arctic Antarctic and Alpine Research, 39(4): 714-722. DOI: 10.1657/1523-0430(06-200).
doi: 10.1657/1523-0430(06-200
Osterkamp TE, 2007. Characteristics of the recent warming of permafrost in Alaska. Journal of Geophysical Research, 112: F02S02. DOI: 10.1029/2006JF000578.
doi: 10.1029/2006JF000578
Peng SS, Piao SL, Ciais P, et al., 2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501: 88-92. DOI: 10.1038/nature12434.
doi: 10.1038/nature12434
Qin DH, Ding YJ, Xiao CD, et al., 2018. Cryospheric Science: research framework and disciplinary system. National Science Review, 5(2): 255-268. DOI: 10.1093/nsr/nwx108.
doi: 10.1093/nsr/nwx108
Richard AK, 2007. Global Warming Is Changing the World. Science, 316(5822):188-190. DOI: 10.1126/science.316. 5822.188.
doi: 10.1126/science.316. 5822.188
Richard AK, 2010. 'Arctic armageddon' needs more science, less hype. Science, 329(5992): 620-621. DOI: 10.1126/science.329.5992.620.
doi: 10.1126/science.329.5992.620
Romanovsky VE, Smith SL, Christiansen HH, 2010. Permafrost Thermal State in the Polar Northern Hemisphere during the International Polar Year 2007-2009: a Synthesis. Permafrost and Periglacial Processes, 21(2): 106-116. DOI: 10.1002/ppp.689.
doi: 10.1002/ppp.689
Smith NV, Saatchi SS, Randerson JT, 2004. Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002. Journal of Geophysical Research, 109: D12101. DOI: 10.1029/2003JD004472.
doi: 10.1029/2003JD004472
Smith SL, Romanovsky VE, Lewkowicz AG, et al., 2010. Thermal State of Permafrost in North America: A Contribution to the International Polar Year. Permafrost and Periglacial Processes, 21(2): 117-135. DOI: 10.1002/ppp.690.
doi: 10.1002/ppp.690
Subke JA, Reichstein M, Tenhunen JD, 2003. Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany. Soil Biology and Biochemistry, 35(11): 1467-1483. DOI: 10.1016/S0038-0717(03)00241-4.
doi: 10.1016/S0038-0717(03)00241-4
Tong CJ, Wu QB, 1996. The effect of climate warming on the Qinghai-Tibetan Highway. Cold Regions Science and Technology, 24(1): 101-106. DOI: 10.1016/0165-232X(95)00012-Z.
doi: 10.1016/0165-232X(95)00012-Z
Wang GX, Liu GS, li CJ, 2012. Effects of changes in alpine grassland vegetation cover on hillslope hydrological processes in a permafrost watershed. Journal of Hydrology, 444-445: 22-33. DOI: 10.1016/j.jhydrol.2012.03.033.
doi: 10.1016/j.jhydrol.2012.03.033
Wang XJ, Yang MX, Pang GJ, 2015a. Influences of two land-surface schemes on RegCM4 precipitation simulations over the Tibetan Plateau. Advances in Meteorology, 106891: 1-12. DOI:10.1155/2015/106891.
doi: 10.1155/2015/106891
Wang XJ, Yang MX, Pang GJ, et al., 2015b. Simulation and improvement of land surface processes in Nameqie, Central Tibetan Plateau, using the Community Land Model (CLM3.5). Environmental Earth Sciences, 73: 7343-7357. DOI: 10.1007/s12665-014-3911-4.
doi: 10.1007/s12665-014-3911-4
Wang XJ, Pang GJ, Yang MX, et al., 2016. Effects of modified soil water-heat physics on RegCM4 simulations of climate over the Tibetan Plateau. Journal of Geophysical Research, 121(12): 6692-6712. DOI: 10.1002/2015JD024407.
doi: 10.1002/2015JD024407
Wu QB, Niu FJ, 2013. Permafrost changes and engineering stability in Qinghai-Xizang Plateau. Chinese Science Bulletin, 58(10): 1079-1094. DOI: 10.1007/s11434-012-5587-z.
doi: 10.1007/s11434-012-5587-z
Wu QB, Zhang TJ, 2008. Recent permafrost warming on the Qinghai-Tibetan Plateau. Journal of Geophysical Research, 113: D13108. DOI: 10.1029/2007jd009539.
doi: 10.1029/2007jd009539
Wu QB, Zhang TJ, 2010. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. Journal of Geophysical Research, 115: D09107. DOI: 10.1029/2009JD012974.
doi: 10.1029/2009JD012974
Wu SH, Yin YH, Zheng D, et al., 2006. Moisture conditions and climate trends in China during the period 1971-2000. International Journal of Climatology, 26: 193-206. DOI: 10.1002/joc.1245.
doi: 10.1002/joc.1245
Wu WR, Dickinson RE, Wang H, et al., 2007. Covariabilities of spring soil moisture and summertime United States precipitation in a climate simulation. International Journal of Climatology, 27: 429-438. DOI: 10.1002/joc.1419.
doi: 10.1002/joc.1419
Wu X, Bruggemann N, Gasche R, et al., 2010. Environmental controls over soil-atmosphere exchange of N2O, NO and CO2 in a temperate Norway spruce forest. Global Biogeochemical Cycles, 24(GB2012): 1-16. DOI:10.1029/ 2009GB003616.
doi: 10.1029/ 2009GB003616
Xue X, Guo J, Han BS, et al., 2009. The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau. Geomorphology, 108(3-4): 182-190. DOI: 10.1016/j.geomorph.2009.01.004.
doi: 10.1016/j.geomorph.2009.01.004
Yang MX, Yao TD, Gou XH, et al., 2003. The soil moisture distribution, thawing-freezing processes and their effects on the seasonal transition on the Qinghai-Xizang (Tibetan) Plateau. Journal of Asian Earth Sciences, 21(5): 457-465. DOI: 10.1016/S1367-9120(02)00069-X.
doi: 10.1016/S1367-9120(02)00069-X
Yang MX, Yao TD, Gou XH, 2000. The soil thawing-freezing processes and water-energy distribution along the Qinghai-Xizang (Tibet) Plateau. Progress in Natural Science, 10(5): 443-450. (in Chinese)
Yang MX, Nelson FE, Shiklomanov NI, et al., 2010. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Science Reviews, 103(1-2): 31-44. DOI: 10.1016/j.earscirev.2010. 07.002.
doi: 10.1016/j.earscirev.2010. 07.002
Yang MX, Yao TD, Gou XH, 2007. Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau. Chinese Science Bulletin, 52(1): 136-139. DOI : 10.1007/s11434-007-0004-8.
doi: 10.1007/s11434-007-0004-8
Yang MX, Yao TD, Nelson FE, et al., 2008. Snow cover and depth of freeze-thaw on the Tibetan Plateau: a case study from 1997 to 1998. Physical Geography, 29(3): 208-221. DOI: 10.2747/0272-3646.29.3.208.
doi: 10.2747/0272-3646.29.3.208
Yang MX, Wang SL, Yao TD, et al., 2004. Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) Plateau. Cold Regions Science and Technology, 39(1): 47-53. DOI: 10.1016/j.coldregions.2004.01.002.
doi: 10.1016/j.coldregions.2004.01.002
Yang MX, Wang XJ, Pang GJ, et al., 2019. The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes. Earth-Science Reviews, 190: 353-369. DOI: 10.1016/j.earscirev.2018.12.018.
doi: 10.1016/j.earscirev.2018.12.018
Yasunari T, Kitoh A, Tokioka T, 1991. Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate-A study with the MRI-GCM. Journal of the Meteorological Society of Japan, 69(4): 473-487. DOI: 10.2151/jmsj1965.69.4_473.
doi: 10.2151/jmsj1965.69.4_473
Zhang TJ, Barry RG, Knowles K, et al., 2008. Statistics and characteristics of permafrost and ground ice distribution in the Northern Hemisphere. Polar Geography, 31(1): 47-68. DOI: 10.1080/10889370802175895.
doi: 10.1080/10889370802175895
Zhang TJ, Barry RG, Knowles K, et al., 2003. Distribution of seasonally and perennially frozen ground in the Northern Hemisphere. In Proceedings of the 8th International Conference on Permafrost, 2: 1289-1294. Zurich: A. A. Balkema Publishers.
Zhang TJ, 2005. Influence of the seasonal snow cover on the ground thermal regime: an overview. Reviews of Geophysics, 43(RG4002): 1-23. DOI: 10.1029/2004RG000157.
doi: 10.1029/2004RG000157
Zhang TJ, 2007. Perspectives on environmental study of response to climatic and land cover/land use change over the Qinghai-Tibetan plateau: an introduction. Arctic Antarctic and Alpine Research, 39(4): 631-641. DOI: 10.1657/1523-0430(07-513).
doi: 10.1657/1523-0430(07-513
Zhang YL, Chang XL, Liang J, et al., 2016. Influence of frozen ground on hydrological processes in alpine regions: a case study in an upper reach of the Heihe River. Journal of Glaciology and Geocryology, 38(5): 1362-1372. DOI: 10.7522/j.issn.1000-0240.2016.0160. (in Chinese)
doi: 10.7522/j.issn.1000-0240.2016.0160.
Zhao L, Cheng GD, Li SX, et al., 2000. Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau. Chinese Science Bulletin, 45(23): 2181-2186. DOI: 10. 1007/BF02886326.
doi: 10. 1007/BF02886326
Zhao L, Ping CL, Yang DQ, et al., 2004. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China. Global and Planetary Change, 43(1-2): 19-31. DOI: 10.1016/j.gloplacha.2004. 02.003.
doi: 10.1016/j.gloplacha.2004. 02.003
Zhao L, Wu QB, Marchenko SS, et al., 2010. Thermal state of permafrost and active layer in central Asia during the International Polar Year. Permafrost and Periglacial Processes, 21(2): 198-207. DOI: 10.1002/ppp.688.
doi: 10.1002/ppp.688
Zimov SA, Schuur EAG, Stuart CF, 2006. Permafrost and the Global Carbon Budget. Science, 312(5780): 1611-1613. DOI: 10.1126/science.1128908.
doi: 10.1126/science.1128908
Zou DF, Zhao L, Sheng Y, et al., 2017. A new map of permafrost distribution on the Tibetan Plateau. The Cryosphere, 11: 2527-2542. DOI: 10.5194/tc-2016-187.
doi: 10.5194/tc-2016-187
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!