Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (3): 218225.doi: 10.3724/SP.J.1226.2019.00218.
• • 上一篇
Glacier mapping based on Chinese high-resolution remote sensing GF-1 satellite and topographic data
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
Aizen VB , Kuzmichenok VA , Surazakov AB , et al ., 2007. Glacier changes in the Tien Shan as determined from topographic and remotely sensed data. Global & Planetary Change, 56(3-4): 328-340. DOI:10.1016/j.gloplacha. 2006.07.016 .
doi: 10.1016/j.gloplacha. 2006.07.016 |
|
Albert TH, 2002. Evaluation of remote sensing techniques for ice-area classification applied to the Tropical Quelccaya ice cap, Peru. Polar Geography, 26: 210-226. DOI: 10.1080/789610193 .
doi: 10.1080/789610193 |
|
Alifu H , Tateishi R , Johnson B , 2015. A new band ratio technique for mapping debris-covered glaciers using Landsat imagery and a digital elevation model. International Journal of Remote Sensing, 36: 2063-2075. DOI: 10.1080/2150704X.2015.1034886 .
doi: 10.1080/2150704X.2015.1034886 |
|
Bishop MP , Bonk R , Kamp U , et al ., 2001. Terrain analysis and data modeling for alpine glacier mapping. Polar Geography, 25: 182-201. DOI: 10.1080/10889370109377712 .
doi: 10.1080/10889370109377712 |
|
Blaschke T, 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1): 2-16. DOI: 10.1016/j.isprsjprs.2009.06.004 .
doi: 10.1016/j.isprsjprs.2009.06.004 |
|
Bolch T , Buchroithner MF , Kunert A , et al ., 2007. Automated Delineation of Debris-Covered Glaciers Based on ASTER Data. In: Proceedings of 27th EARSel Symposium, Bozen, Italy, June 4-7, 2007. | |
Bolch T , Buchroithner MF , Pieczonka T , 2008. Planimetric and volumetric glacier changes in the Khumbu Himalaya 1962-2005 using Corona and ASTER data. Journal of Glaciology, 54(187): 562-600. DOI: 10.3189/0022143087865 70782 .
doi: 10.3189/0022143087865 70782 |
|
Jacobs JD , Simms ÉL , Simms A , 1997. Recession of the southern part of Barnes Ice Cap, Baffin Island, Canada, between 1961 and 1993, determined from digital mapping of Landsat TM. Journal of Glaciology, 43(143): 98-102. DOI: 10. 1017/S0022143000002859 .
doi: 10. 1017/S0022143000002859 |
|
Jin X, 2012. Segmentation-based image processing system. U.S. Patent 8,260,048, filed November 14, 2007, and issued September 4, 2012. | |
Kääb A , Huggel C , Paul F , et al ., 2002. Glacier monitoring from ASTER imagery: accuracy and applications. Proceedings of EARSeL-LISSIG-Workshop Observing our Cryosphere from Space, Bern, pp. 43-53. | |
Kargel JS , Abrams MJ , Bishop MP , et al ., 2005. Multispectral imaging contributions to global land ice measurements from space. Remote Sensing of Environment, 99(1-2): 187-219. DOI: 10.1080/014311699213442 .
doi: 10.1080/014311699213442 |
|
Karimi N , Farokhnia A , Karimi L , et al ., 2012. Combining optical and thermal remote sensing data for mapping debris-covered glaciers (Alamkouh Glaciers, Iran). Cold Regions Science and Technology, 71(4): 73-83. DOI: 10.1016/j.coldregions.2011.10.004 .
doi: 10.1016/j.coldregions.2011.10.004 |
|
Kraaijenbrinka PDA , Sheab JM , Pellicciottic F , et al ., 2016. Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier. Remote Sensing of Environment, 186(1): 581-595. DOI: 10.1016/j.rse.2016.09.013 .
doi: 10.1016/j.rse.2016.09.013 |
|
Lemke PJ , Ren RB , Alley I , et al ., 2007. Observations: changes in snow, ice and frozen ground. In: Solomon S , Qin DH , Manning M , et al . (eds.).Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Britain, pp . 337-383. | |
Lougeay R, 1974. Detection of buried glacial and ground ice with thermal infrared remote sensing. In: Santeford HS, Smith JL (eds.). Advanced concepts and techniques in the study of snow and ice resources. National Academy of Sciences, Washington DC , pp . 487-494. | |
Paul F, 2002. Combined technologies allow rapid analysis of glacier changes. EOS, Transactions, American Geophysical Union, American, 83: 253, 260-261. DOI: 10.1029/2002 EO000177 .
doi: 10.1029/2002 EO000177 |
|
Paul F , Huggel C , Kääb A , 2004. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sensing of Environment, 89(4): 510-518. DOI: 10.1016/j.rse.2003.11.007 .
doi: 10.1016/j.rse.2003.11.007 |
|
Paul F , Huggel C , Kääb A , et al ., 2003. Comparison of TM-derived glacier areas with higher resolution data sets. EARSeL Workshop on Remote Sensing of Land Ice and Snow, Bern, 11.-13.3. EARSeL eProceedings, 2: 15-21. | |
Ranzi R , Grossi G , Iacovelli L , et al ., 2004. Use of multispectral ASTER images for mapping debris-covered glaciers within the GLIMS project. International Geoscience and Remote Sensing Symposium, Anchorage, Alaska, USA. | |
Rastner P , Bolch T , Notarnicola C , et al ., 2014. A comparison of pixel- and object-based glacier classification with optical satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(3): 984-993. DOI: 10.1109/JSTARS.2013.2274668 .
doi: 10.1109/JSTARS.2013.2274668 |
|
Robinson DJ , Redding NJ , Crisp DJ , 2002. Implementation of a fast algorithm for segmenting SAR imagery. Scientific and Technical Report. Australia: Defense Science and Technology Organization. | |
Robson BA, Hölbling D , Nuth C , et al ., 2016. Decadal scale changes in glacier area in the Hohe Tauern national park (Austria) determined by object-based image analysis. Remote Sensing, 8: 67. DOI: 10.3390/rs8010067 .
doi: 10.3390/rs8010067 |
|
Robson BA, Nuth C , Dahl SO , et al ., 2015. Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sensing of Environment, 170(1): 372-387. DOI: 10. 1016/j.rse.2015.10.001 .
doi: 10. 1016/j.rse.2015.10.001 |
|
Shukla A , Arora MK , Gupta RP , 2010b. Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters. Remote Sensing of Environment, 114(7): 1378-1387. DOI: 10.1016/j.rse.2010.01.015 .
doi: 10.1016/j.rse.2010.01.015 |
|
Shukla A , Arora MK , Gupta RP , 2010a. Delineation of debris-covered glacier boundaries using optical and thermal remote sensing data. Remote Sensing Letters, 1(1): 11-17. DOI: 10.1080/01431160903159316 .
doi: 10.1080/01431160903159316 |
|
Sidjak RW , Wheate RD , 1999. Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and digital elevation data. International Journal of Remote Sensing, 20(2): 273-284. DOI: 10.1080/014311699213442 .
doi: 10.1080/014311699213442 |
|
Taschner S , Ranzi R , 2002. Comparing Opportunities of Landsat-TM and ASTER Data for Monitoring a Debris-Covered Glacier in the Italian Alps within the GLIMS Project. International Geoscience and Remote Sensing Symposium, Toronto, Canada. | |
Xiao PF , Feng XZ , Xie SP , 2015. Research progresses of high-resolution remote sensing of snow in Manasi River Basin in Tianshan Mountains, Xinjiang Province. Journal of Nanjing University (Natural Sciences), 51(5): 909-920. (in Chinese) |
No related articles found! |
|