Sciences in Cold and Arid Regions ›› 2017, Vol. 9 ›› Issue (1): 89–96.doi: 10.3724/SP.J.1226.2017.00089

• • 上一篇    

Identification of Kalidium species (Chenopodiaceae) by DNA barcoding

XiaoHui Liang, YuXia Wu   

  1. State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
  • 收稿日期:2016-07-12 修回日期:2016-10-19 发布日期:2018-11-23
  • 通讯作者: YuXia Wu, School of Life Sciences, Lanzhou University. No. 222, South Tianshui Road, Lanzhou, Gansu 730000, China. E-mail:wuyx@lzu.edu.cn E-mail:YuXia Wu, School of Life Sciences, Lanzhou University. No. 222, South Tianshui Road, Lanzhou, Gansu 730000, China. E-mail:wuyx@lzu.edu.cn

Identification of Kalidium species (Chenopodiaceae) by DNA barcoding

XiaoHui Liang, YuXia Wu   

  1. State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
  • Received:2016-07-12 Revised:2016-10-19 Published:2018-11-23
  • Contact: YuXia Wu, School of Life Sciences, Lanzhou University. No. 222, South Tianshui Road, Lanzhou, Gansu 730000, China. E-mail:wuyx@lzu.edu.cn E-mail:YuXia Wu, School of Life Sciences, Lanzhou University. No. 222, South Tianshui Road, Lanzhou, Gansu 730000, China. E-mail:wuyx@lzu.edu.cn

摘要: DNA barcoding is an increasingly prevalent molecular biological technology which uses a short and conserved DNA fragment to facilitate rapid and accurate species identification. Kalidium species are distributed in saline soil habitat throughout Southeast Europe and Northwest Asia, and used mainly as forage grass in China. The discrimination of Kalidium species was based only on morphology-based identification systems and limited to recognized species. Here, we tested four DNA candidate loci, one nuclear locus (ITS, internal transcribed spacer) and three plastid loci (rbcL, matK and ycf1b), to select potential DNA barcodes for identifying different Kalidium species. Results showed that the best DNA barcode was ITS locus, which displayed the highest species discrimination rate (100%), followed by matK (33.3%), ycf1b (16.7%), and rbcL (16.7%). Meanwhile, four loci clearly identified the variant species, Kalidium cuspidatum (Ung.-Sternb.) Grub.var. sinicum A. J. Li, as a single species in Kalidium.

关键词: DNA barcoding, Kalidium, species identification

Abstract: DNA barcoding is an increasingly prevalent molecular biological technology which uses a short and conserved DNA fragment to facilitate rapid and accurate species identification. Kalidium species are distributed in saline soil habitat throughout Southeast Europe and Northwest Asia, and used mainly as forage grass in China. The discrimination of Kalidium species was based only on morphology-based identification systems and limited to recognized species. Here, we tested four DNA candidate loci, one nuclear locus (ITS, internal transcribed spacer) and three plastid loci (rbcL, matK and ycf1b), to select potential DNA barcodes for identifying different Kalidium species. Results showed that the best DNA barcode was ITS locus, which displayed the highest species discrimination rate (100%), followed by matK (33.3%), ycf1b (16.7%), and rbcL (16.7%). Meanwhile, four loci clearly identified the variant species, Kalidium cuspidatum (Ung.-Sternb.) Grub.var. sinicum A. J. Li, as a single species in Kalidium.

Key words: DNA barcoding, Kalidium, species identification

Asahina H, Shinozaki J, Masuda K, et al., 2010. Identification of medicinal Dendrobium species by phylogenetic analyses using matK and rbcL sequences. Journal of Natural Medicine, 64(2):133-138. DOI:10.1007/s11418-009-0379-8.
Barrett RDH, Hebert PDN, 2005. Identifying spiders through DNA barcodes. Canadian Journal of Zoology, 83(3):481-491. DOI:10.1139/z05-024.
Dong WP, Chao X, Chang HL, et al., 2015. ycf1, the most promising plastid DNA barcode of land plants. Scientific Reports, 5:1-5. DOI:10.1038/srep08348.
Ford CS, Ayres KL, Toomey N, et al., 2009. Selection of candidate coding DNA barcoding regions for use on land plants. Botanical Journal of the Linnean Society, 159(1):1-11. DOI:10.1111/j.1095-8339.2008.00938.x.
Fu YM, Jiang WM, Fu CX, 2011. Identification of species within Tetrastigma (Miq.) Planch. (Vitaceae) based on DNA barcoding techniques. Journal of Systematics and Evolution, 49(3):237-245. DOI:10.1111/j.1759-6831.2011.00126.x.
Gong W, Liu Y, Chen J, et al., 2015. DNA barcodes identify Chinese medicinal plants and detect geographical patterns of Si-nosenecio (Asteraceae). Journal of Systematics and Evolution, 54(1):83-91. DOI:10.1111/jse.12166.
Hasebe M, Wolfe PG, Pryer KM, 1995. Fern phylogeny based on rbcL nucleotide sequences. American Fern Journal, 85(4):134-181. DOI:10.2307/1547807.
Hogg ID, Hebert PDN, 2004. Biological identification of spring-tails (Hexapoda:Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes. Canadian Journal of Zoology, 82(5):749-754. DOI:10.1139/z04-041.
Hollingsworth ML, Clark AA, Forrest LL, et al., 2009. Selecting barcoding loci for plants:evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Molecular Ecology Resources, 9(2):439-457. DOI:10.1111/j.1755-0998.2008.02439.x.
Jia J, Cai L, Shi C, 2010. Study on extraction method of nucleic acid in Kalidium foliatum (Pall.). Chinese Agricultural Science Bulletin, 26(4):49-52.
Kelly LJ, Ameka GK, Chase MW, 2010. DNA barcoding of African Podostemaceae (river-weeds):a test of proposed barcode re-gions. Taxon, 59(1):251-260.
Kong XW, 1979. Flora of China. Beijing:Science Press, pp. 14, 16, 18.
Kress WJ, Erickson DL, 2007. A two-locus global DNA barcode for land plants:the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE, 2(6):e508. DOI:10.1371/journal.pone. 0000508.
Krever V, Pereladova O, Williams M, et al., 1998. Biodiversity Conservation in Central Asia:An Analysis of Biodiversity and Current Threats and Initial Investment Portfolios. World Wild Fund for Nature (WWF), Almaty.
Kumar S, Nei M, Dudley J, et al., 2008. MEGA:a biologist-centric software for evolutionary analysis of DNA and protein se-quences. Briefings in Bioinformatics, 9(4):299-306. DOI:10.1093/bib/bbn017.
Lahaye R, van der Bank M, Bogarin D, et al., 2008. DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America, 105(8):2923-2928. DOI:10.1073/pnas.0709936105.
Liu J, Moller M, Gao LM, et al., 2011. DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae), and the discovery of cryptic species. Molecular Ecology Resources, 11(1):89-100. DOI:10.1111/j.1755-0998.2010.02907.x.
Meier R, Shiyang K, Vaidya G, et al., 2006. DNA barcoding and taxonomy in Diptera:a tail of high intraspecific variability and low identification success. Systematic Biology, 55(5):715-728. DOI:10.1080/10635150600969864.
Moniz MB, Kaczmarska I, 2010. Barcoding of diatoms:nuclear encoded ITS revisited. Protist, 161(1):7-34. DOI:10.1016/j.protis.2009.07.001.
Newmaster SG, Fazekas AJ, Ragupathy S, 2006. DNA barcoding in land plants:evaluation of rbcL in a multigene tiered approach. Canadian Journal of Botany, 84(3):335-341. DOI:10.1139/b06-047.
Newmaster SG, Fazekas AJ, Steeves RAD, et al., 2008. Testing candidate plant barcode regions in the Myristicaceae. Molecular Ecology Resources, 8(3):480-490. DOI:10.1111/j.1471-8286.2007.02002.x.
Newmaster SG, Ragupathy S, 2009. Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Molecular Ecology Resources, 9(Supp. 1):172-180. DOI:10.1111/j.1755-0998. 2009.02642.x.
Pang XH, Song JY, Zhu YJ, et al., 2010. Using DNA barcoding to identify species within Euphorbiaceae. Planta Medica, 76(15):1784-1786.
Ren BQ, Xiang XG, Chen ZD, 2010. Species identification of Alnus (Betulaceae) using nrDNA and cpDNA genetic markers. Mo-lecular Ecology Resources, 10(4):594-605. DOI:10.1111/j.1755-0998.2009.02815.x.
Singh G, Dal Grande F, Divakar PK, et al., 2015. Coalescent-based species delimitation approach uncovers high cryptic diversity in the cosmopolitan lichen-forming fungal genus Protoparmelia (Lecanorales, Ascomycota). PLoS ONE, 10(5):e0124625. DOI:10.1371/journal.pone.0124625.
Wood HP, 2006. The Dendrobiums. Ruggell:Gantner Verlag, pp. 847.
Zhao KF, Fan H, Jiang XY, et al., 2002. Improvement and utilization of saline soil by planting halophytes. Chinese Journal of Applied & Environmental Biology, 8(1):31-35. (in Chinese)
Zheng SH, Ren WG, Wang ZH, et al., 2015. Use of chloroplast DNA barcodes to identify Osmunda japonica and its adulterants. Plant Systematic and Evolution, 301(7):1843-1850. DOI:10.1007/s00606-015-1197-y.
Zhou ZY, Yan SY, Qin Y, et al., 2009. The character of shrub diversity in arid desert regions in Alashan. Journal of Arid Land Resources and Environment, 23(9):146-150. DOI:10.13448/j.cnki.jal re.2009.09.025.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!