Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (4): 244258.doi: 10.1016/j.rcar.2022.09.003.
• • 上一篇
Thermal-Hydro-Mechanical coupled analysis of unsaturated frost susceptible soils
- 1.Graduate School of Engineering, Hokkaido University, Hokkaido 060-8628, Japan
2.Faculty of Engineering, Hokkaido University, Hokkaido 060-8628, Japan
Anderson DM, Tice AR, McKim HL, 1973. The unfrozen water and the apparent specific heat capacity of frozen soils. Second International Conference on Permafrost, Yakutsk, USSR. North American Contribution. pp. 289-295. | |
Biot MA, 1941. General theory of three‐dimensional consolidation. Journal of Applied Physics, 12(2): 155-164. DOI: 10. 1063/1.1712886 .
doi: 10. 1063/1.1712886 |
|
Celia MA, Binning P, 1992. A mass conservative numerical solution for two‐phase flow in porous media with application to unsaturated flow. Water Resources Research, 28(10): 2819-2828. DOI: 10.1029/92WR01488 .
doi: 10.1029/92WR01488 |
|
Côté J, Konrad MA, 2005. generalized thermal conductivity model for soils and construction materials. Canadian Geotechnical Journal, 42(2): 443-458. DOI: 10.1016/j.jmps. 2005.04.001 .
doi: 10.1016/j.jmps. 2005.04.001 |
|
Coussy O, 2005. Poromechanics of freezing materials. Journal of the Mechanics and Physics of Solids, 53(8): 1689-1718. DOI: 10.1016/j.jmps.2005.04.001 .
doi: 10.1016/j.jmps.2005.04.001 |
|
Coussy O, Monteiro PJM, 2008. Poroelastic model for concrete exposed to freezing temperatures. Cement and Concrete Research, 38(1): 40-48. DOI: 10.1016/j.cemconres. 2007.06.006 .
doi: 10.1016/j.cemconres. 2007.06.006 |
|
Dall'Amico M, Endrizzi S, Gruber S, et al., 2011. A robust and energy-conserving model of freezing variably-saturated soil. The Cryosphere, 5(2): 469-484. DOI: 10.5194/tc-5-469-2011 .
doi: 10.5194/tc-5-469-2011 |
|
De Vries DA, 1958. Simultaneous transfer of heat and moisture in porous media. Eos, Transactions American Geophysical Union, 39(5): 909-916. DOI: 10.1016/0735-1933(90)90048-O .
doi: 10.1016/0735-1933(90)90048-O |
|
De Vries DA, 1963. Thermal properties of soils. In: Van Wijk WR(ed.). Physics of the plant environment. Amsterdam, pp. 210-235. | |
Fayer MJ, 2000. UNSAT-H version 3.0: Unsaturated Soil Water and Heat Flow Model Theory, User Manual, and Examples. No. 820201000. Pacific Northwest National Laboratory, Richland, WA (U.S.). | |
Flerchinger GN, Saxton KE, 1989. Simultaneous heat and water model of a freezing snow-residue-soil system I. Theory and Development. Transactions of the American Society of Agricultural Engineers, 32(2): 565-571. DOI: 10.13031/2013.31040 .
doi: 10.13031/2013.31040 |
|
Fredlund DG, Hendry R, 1993. Soil mechanics for Unsaturated Soils. John Wiley and Sons, New York City, pp. 492. | |
Gilpin RR, 1980. A model for the prediction of ice lensing and frost heave in soils. Water Resources Research, 16(5): 918-930. DOI: 10.1029/WR016i005p00918 .
doi: 10.1029/WR016i005p00918 |
|
Guymon GL, Hromadka ITV, Berg RL, 1980. A one-dimensional frost heave model based upon simulation of simultaneous heat and water flux. Cold Regions Science and Technology, 3(2-3): 253-262. DOI: 10.1016/0165-232X(80)90032-4 .
doi: 10.1016/0165-232X(80)90032-4 |
|
Guymon GL, Hromadka TV, Berg RL, 1984. Two-dimensional model of coupled heat and moisture transport in frost-heaving soils. Journal of Energy Resources Technology, 106: 336-343. DOI: 10.1115/1.3231062 .
doi: 10.1115/1.3231062 |
|
Guymon GL, James NL, 1974. A coupled heat and moisture transport model for arctic soils. Water Resources Research, 10(5): 995-1001. DOI: 10.1029/WR010i005p00995 .
doi: 10.1029/WR010i005p00995 |
|
Guymond GL, Berg RL, Hromadka TV, 1993. Mathematical model of frost heave and thaw settlements in pavements. USA Cold Regions Research and Engineering Laboratory, CRREL Report 93-2. | |
Hansson K, Šimunek J, Mizoguchi M, et al., 2004. Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications. Vadose Zone Journal, 3(2): 693-704. DOI: 10.2113/3.2.693 .
doi: 10.2113/3.2.693 |
|
Harlan RL, 1973. Analysis of coupled heat‐fluid transport in partially frozen soil. Water Resources Research, 9(5): 1314-1323. DOI: 10.1029/WR009i005p01314 .
doi: 10.1029/WR009i005p01314 |
|
Hermansson Å, Guthrie WS, 2005. Frost heave and water uptake rates in silty soil subject to variable water table height during freezing. Cold Regions Science and Technology, 43(3): 128-139. DOI: 10.1016/j.coldregions.2005.03.003 .
doi: 10.1016/j.coldregions.2005.03.003 |
|
Ishikawa T, Tokoro T, Akagawa S, 2015. Frost Heave Behavior of Unsaturated Soils Under Low Overburden Pressure and Its Estimation. Proceedings of GEO Quebec. | |
Ishikawa T, Tokoro T, Miura S, 2016. Influence of freeze-thaw action on hydraulic behavior of unsaturated volcanic coarse-grained soils. Soils and Foundations, 56(5): 790-804. DOI: 10.1016/j.sandf.2016.08.005 .
doi: 10.1016/j.sandf.2016.08.005 |
|
Jame YM, 1976. Heat and mass transfer in freezing unsaturated soil in a closed system. Proceedings of 2nd Conference on Soil Water Problems in Cold Regions, Edmonton, Alberta. pp. 46-62. | |
Jame YW, Norum DI, 1973. Phase composition of a partially frozen soil. Agricultural Engineering Department, University of Saskatchewan. pp. 17. | |
Jansson PE, 2012. CoupleModel: model use, calibration, and validation. Transactions of the ASABE, 55(4): 1337-1344. DOI: 10.13031/2013.42248 .
doi: 10.13031/2013.42248 |
|
Konrad JM, 2005. Estimation of the segregation potential of fine-grained soils using the frost heave response of two reference soils. Canadian Geotechnical Journal, 42(1): 38-50. DOI: 10.1139/t04-080 .
doi: 10.1139/t04-080 |
|
Konrad JM, Morgenstern NR, 1980. A mechanistic theory of ice lens formation in fine-grained soils. Canadian Geotechnical Journal, 17(4): 473-486. DOI: 10.1139/t80-056 .
doi: 10.1139/t80-056 |
|
Konrad JM, Morgenstern NR, 1981. The segregation potential of a freezing soil. Canadian Geotechnical Journal, 18(4): 482-491. DOI: 10.1139/t81-059 .
doi: 10.1139/t81-059 |
|
Konrad JM, Morgenstern NR, 1982. Prediction of frost heave in the laboratory during transient freezing. Canadian Geotechnical Journal, 19(3): 250-259. DOI: 10.1139/t82-032 .
doi: 10.1139/t82-032 |
|
Konrad JM, Nixon JF, 1994. Frost heave characteristics of a clayey silt subjected to small temperature gradients. Cold Regions Science and Technology, 22(3): 299-310. DOI: 10.1016/0165-232X(94)90007-8 .
doi: 10.1016/0165-232X(94)90007-8 |
|
Lai YM, Pei WS, Zhang MY, et al., 2014. Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil. International Journal of Heat and Mass Transfer, 78: 805-819. DOI: 10.1016/j.ijheatmasstransfer.2014.07.035 .
doi: 10.1016/j.ijheatmasstransfer.2014.07.035 |
|
Liu Q, Wang Z, Li Z, et al., 2020. Transversely isotropic frost heave modeling with heat-moisture-deformation coupling. Acta Geotechnica, 15(5): 1273-1287. DOI: 10.1007/s11440-019-00774-1 .
doi: 10.1007/s11440-019-00774-1 |
|
Liu Z, 2018. Multiphysics in Porous Materials. Multiphysics in Porous Materials. Springer, Cham, Cham, Switzerland. pp. 397. | |
Luo B, Ishikawa T, Tokoro T, et al., 2017. Coupled Thermo-Hydro-Mechanical Analysis of Freeze-Thaw Behavior of Pavement Structure over a Box Culvert. Transportation Research Record, 2656(1): 12-22. DOI: 10.3141/2656-02 .
doi: 10.3141/2656-02 |
|
Michalowski RL, 1993. A constitutive model of saturated soils for frost heave simulations. Cold Regions Science and Technology, 22(1): 47-63. DOI: 10.1016/0165-232X(93)90045-A .
doi: 10.1016/0165-232X(93)90045-A |
|
Mu S, Ladanyi B, 1987. Modelling of coupled heat, moisture and stress field in freezing soil. Cold Regions Science and Technology, 14(3): 237-246. DOI: 10.1016/0165-232X(87)90016-4 .
doi: 10.1016/0165-232X(87)90016-4 |
|
Mualem Y, 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3): 513-522. DOI: 10.1029/WR012i003p00513 .
doi: 10.1029/WR012i003p00513 |
|
Nakamura D, Suzuki T, Goto T, et al., 2011. Changes in the permeability coefficient and the void ratio of compacted soil by the effect of freeze-thaw cycles. Journal of Japan Society of Civil Engineers, Series C (Geosphere Engineering), 67(2): 264-275. DOI: 10.2208/jscejge.67.264 .
doi: 10.2208/jscejge.67.264 |
|
Nassar IN, Horton R, 1989. Water transport in unsaturated nonisothermal salty soil: II. Theoretical development. Soil Science Society of America Journal, 53(5): 1330-1337. DOI: 10.2136/sssaj1989.03615995005300050005x .
doi: 10.2136/sssaj1989.03615995005300050005x |
|
Nassar IN, Horton R, 1992. Simultaneous transfer of heat, water, and solute in porous media: I. Theoretical development. Soil Science Society of America Journal, 56(5): 1350-1356. DOI: 10.2136/sssaj1992.03615995005600050004x .
doi: 10.2136/sssaj1992.03615995005600050004x |
|
Neaupane KM, Yamabe T, Yoshinaka R, 1999. Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock. International Journal of Rock Mechanics and Mining Sciences, 36(5): 563-580. DOI: 10. 1016/S0148-9062(99)00026-1 .
doi: 10. 1016/S0148-9062(99)00026-1 |
|
Nishimura S, Gens A, Olivella S, et al., 2009. THM-coupled finite element analysis of frozen soil: formulation and application. Géotechnique, 59(3): 159-171. DOI: 10.1680/geot. 2009.59.3.159 .
doi: 10.1680/geot. 2009.59.3.159 |
|
Nixon JF, 1991. Discrete ice lens theory for frost heave in soils. Canadian Geotechnical Journal, 28(6): 843-859. DOI: 10.1139/t91-102 .
doi: 10.1139/t91-102 |
|
Nixon JF, 1992. Discrete ice lens theory for frost heave beneath pipelines. Canadian Geotechnical Journal, 29(3): 487-497. DOI: 10.1139/t92-053 .
doi: 10.1139/t92-053 |
|
Noborio K, McInnes KJ, Heilman JL, 1996. Two‐dimensional model for water, heat, and solute transport in furrow‐irrigated soil: II. Field evaluation. Soil Science Society of America Journal, 60(4): 1010-1021. DOI: 10.2136/sssaj1996.03615995006000040008x .
doi: 10.2136/sssaj1996.03615995006000040008x |
|
O'Neill K, Miller RD, 1985. Exploration of a rigid ice model of frost heave. Water Resources Research, 21(3): 281-296. DOI: 10.1029/WR021i003p00281 .
doi: 10.1029/WR021i003p00281 |
|
Rosenberg NJ, Blad BL, Verma SB, 1983. Microclimate: the Biological Environment. John Wiley and Sons. pp. 95-110. | |
Shoop SA, Susan RB, 1997. Moisture migration during freeze and thaw of unsaturated soils: modeling and large scale experiments. Cold Regions Science and Technology, 25(1): 33-45. DOI: 10.1016/S0165-232X(96)00015-8 .
doi: 10.1016/S0165-232X(96)00015-8 |
|
Šimůnek J, Van Genuchten MT, Šejna, M, 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone Journal, 15(7), 25. DOI: 10. 2136/vzj2016.04.0033 .
doi: 10. 2136/vzj2016.04.0033 |
|
Spaans EJ, Baker JM, 1995. Examining the use of time domain reflectometry for measuring liquid water content in frozen soil. Water Resources Research, 31(12) : 2917-2925. DOI: 10.1029/95WR02769 .
doi: 10.1029/95WR02769 |
|
Stuurop JC, Van der Zee SEM, Voss, CI., et al., 2021. Simulating water and heat transport with freezing and cryosuction in unsaturated soil: Comparing an empirical, semi-empirical and physically-based approach. Advances in Water Resources, 149: 103846. DOI: 10.1016/j.advwatres.2021. 103846 .
doi: 10.1016/j.advwatres.2021. 103846 |
|
Taylor GS, Luthin JN, 1978. A model for coupled heat and moisture transfer during soil freezing. Canadian Geotechnical Journal, 15(4): 548-555. DOI: 10.1139/t79-091 .
doi: 10.1139/t79-091 |
|
Thomas HR, 1985. Modelling two‐dimensional heat and moisture transfer in unsaturated soils, including gravity effects. International Journal for Numerical and Analytical Methods in Geomechanics, 9(6): 573-588. DOI: 10.1002/nag. 1610090606 .
doi: 10.1002/nag. 1610090606 |
|
Thomas HR, Cleall P, Li YC, et al., 2009. Modelling of cryogenic processes in permafrost and seasonally frozen soils. Geotechnique, 59(3): 173-184. DOI: 10.1680/geot.2009. 59.3.173 .
doi: 10.1680/geot.2009. 59.3.173 |
|
Thomas HR, He Y, 1995. Analysis of coupled heat, moisture and air transfer in a deformable unsaturated soil. Geotechnique, 45(4): 677-689. DOI: 10.1680/geot.1995.45.4.677 .
doi: 10.1680/geot.1995.45.4.677 |
|
Thomas HR, King SD, 1991.Coupled temperature/capillary potential variations in unsaturated soil. Journal of Engineering Mechanics, 117(11): 2475-2491. DOI: 10.1061/(ASCE)0733-9399(1991)117:11(2475 ).
doi: 10.1061/(ASCE)0733-9399(1991)117:11(2475 |
|
Tokoro T, Ishikawa T, Akagawa S, 2016. Temperature dependency of permeability coefficient of frozen soil. In Proceedings of GEO Vancouver, British Columbia, Canada. | |
Ueda Y, Ohrai T, Tamura T, 2005. Study on the Frost Heave Ratios in Triaxial Directions of Soil Based on Effective Stresses Consideration. Proceedings-Japan Society Of Civil Engineers. Dotoku Gakkai, pp:67-78. | |
Yin X, Liu E, Song B,et al., 2018. Numerical analysis of coupled liquid water, vapor, stress and heat transport in unsaturated freezing soil. Cold Regions Science and Technology, 155: 20-28. DOI: 10.1016/j.coldregions.2018.07.008 .
doi: 10.1016/j.coldregions.2018.07.008 |
|
Yu H, Li S, Liu Y, et al., 2011. Study on temperature distribution due to freezing and thawing at the Fengman concrete gravity dam. Thermal Science 15(): 27-32. DOI: 10.2298/TSCI11S1027Y .
doi: 10.2298/TSCI11S1027Y |
|
Yu L, Zeng Y, Su Z, 2020. Understanding the mass, momentum, and energy transfer in the frozen soil with three levels of model complexities. Hydrology and Earth System Sciences, 24(10): 4813-4830. DOI: 10.5194/hess-24-4813-2020 .
doi: 10.5194/hess-24-4813-2020 |
|
Zhang S, Teng J, He Z, et al., 2016. Importance of vapor flow in unsaturated freezing soil: a numerical study. Cold Regions Science and Technology, 126: 1-9. DOI: 10.1016/j.coldregions.2016.02.011 .
doi: 10.1016/j.coldregions.2016.02.011 |
|
Zhao Y, Nishimura T, Hill R, et al., 2013. Determining hydraulic conductivity for air‐filled porosity in an unsaturated frozen soil by the multistep outflow method. Vadose Zone Journal, 12(1): 1-10. DOI: 10.2136/vzj2012.0061 .
doi: 10.2136/vzj2012.0061 |
|
Zheng D, Rogier V, Su Z, et al., 2021. Development of the Hydrus-1D Freezing module and its application in simulating the coupled movement of water, vapor, and heat. Journal of Hydrology, 598: 126250. DOI: 10.1016/j.jhydrol.2021. 126250 .
doi: 10.1016/j.jhydrol.2021. 126250 |
|
Zhou J, Li D, 2012. Numerical analysis of coupled water, heat and stress in saturated freezing soil. Cold Regions Science and Technology, 72: 43-49. DOI: 10.1016/j.coldregions. 2011.11.006 .
doi: 10.1016/j.coldregions. 2011.11.006 |
No related articles found! |
|