Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (3): 180-188.doi: 10.3724/SP.J.1226.2020.00180
XiaoFeng Li1,2,Chao Li3,Qin Zhou4,GuoXiong Chen1,PengShan Zhao1()
Abe A, Kosugi S, Yoshida K, et al., 2012. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 30: 174-178. DOI: 10.1038/nbt.2095.
doi: 10.1038/nbt.2095 |
|
Austin RS, Vidaurre D, Stamatiou G, et al., 2011. Next-generation mapping of Arabidopsis genes. Plant Journal, 67: 715-725. DOI: 10.1111/j.1365-313X.2011.04619.x.
doi: 10.1111/j.1365-313X.2011.04619.x |
|
Anders S, Huber W, 2010. Differential expression analysis for sequence count data. Genome Biology, 11: R106. DOI: 10. 1186/gb-2010-11-10-r106.
doi: 10. 1186/gb-2010-11-10-r106 |
|
Aarts MG, Keijzer CJ, Stiekema WJ, et al., 1995. Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. The Plant Cell, 7: 2115-2127. DOI: 10.1105/tpc.7.12.2115.
doi: 10.1105/tpc.7.12.2115 |
|
Chen G, Komatsuda T, Ma JF, et al., 2011a. A functional cutin matrix is required for plant protection against water loss. Plant Signal and Behavior, 6: 1297-1299. DOI: 10.4161/psb.6.9.17507.
doi: 10.4161/psb.6.9.17507 |
|
Chen G, Komatsuda T, Ma JF, et al., 2011b. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. Proceedings of the National Academy of Sciences of the United States of America, 108: 12354-12359. DOI: 10.1073/pnas. 1108444108.
doi: 10.1073/pnas. 1108444108 |
|
Chen G, Komatsudu T, Pourkheirandish M, et al., 2009a. Mapping of the eibi1 gene responsible for the drought hypersensitive cuticle in wild barley (Hordeum spontaneum). Breeding Science, 59: 21-26. DOI: 10.1270/jsbbs.59.21.
doi: 10.1270/jsbbs.59.21 |
|
Chen G, Pourkheirandish M, Sameri M, et al., 2009b. Genetic targeting of candidate genes for drought sensitive gene eibi1 of wild barley (Hordeum spontaneum). Breeding Science, 59: 637-644. DOI: 10.1270/jsbbs.59.637.
doi: 10.1270/jsbbs.59.637 |
|
Close TJ, Bhat PR, Lonardi S, et al., 2009. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics, 10: 582. DOI: 10.1186/1471-2164-10-582.
doi: 10.1186/1471-2164-10-582 |
|
Chen G, Sagi M, Weining S, et al., 2004. Wild barley eibi1 mutation identifies a gene essential for leaf water conservation. Planta, 219: 684-693. DOI: 10.1007/s00425-004-1277-7.
doi: 10.1007/s00425-004-1277-7 |
|
Dominguez E, Herediaguerrero JA, Heredia A, 2017. The plant cuticle: old challenges, new perspectives. Journal of Experimental Botany, 68: 5251-5255. DOI: 10.1093/jxb/erx389.
doi: 10.1093/jxb/erx389 |
|
Druka A, Franckowiak J, Lundqvist U, et al., 2011. Genetic dissection of barley morphology and development. Plant Physiology, 155: 617-627. DOI: 10.1104/pp.110.166249.
doi: 10.1104/pp.110.166249 |
|
Franckowiak JD, Kleinhofs A, Lundqvist A, 2016. Descriptions of barley genetic stocks for 2016. Barley Genetics Newsletter, 46: 1-12. | |
Fekih R, Takagi H, Tamiru M, et al., 2013. MutMap+: genetic mapping and mutant identification without crossing in rice. PloS One, 8: e68529. DOI: 10.1371/journal.pone.0068529.
doi: 10.1371/journal.pone.0068529 |
|
Garroum I, Bidzinski P, Daraspe J, et al., 2016. Cuticular defects in Oryza sativa ATP-binding cassette transporter G31 mutant plants cause dwarfism, elevated defense responses and pathogen resistance. Plant and Cell Physiology, 57: 1179-1188. DOI: 10.1093/pcp/pcw066.
doi: 10.1093/pcp/pcw066 |
|
Giovannoni JJ, Wing RA, Ganal MW, et al., 1991. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Research, 19: 6553-6558. DOI: 10.1093/nar/19. 23.6553.
doi: 10.1093/nar/19. 23.6553 |
|
Hen-Avivi S, Savin O, Racovita RC, et al., 2016. A Metabolic Gene Cluster in the Wheat W1 and the Barley Cer-cqu Loci Determines beta-Diketone Biosynthesis and Glaucousness. The Plant Cell, 28: 1440-1460. DOI: 10.1105/tpc.16.00197.
doi: 10.1105/tpc.16.00197 |
|
Hill JT, Demarest BL, Bisgrove BW, et al., 2013. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Research, 23: 687-697. DOI: 10.1101/gr.146936.112.
doi: 10.1101/gr.146936.112 |
|
Ingram G, Nawrath C, 2017. The roles of the cuticle in plant development: organ adhesions and beyond. Journal of Experimental Botany, 68: 5307-5321. DOI: 10.1093/jxb/erx313.
doi: 10.1093/jxb/erx313 |
|
James GV, Patel V, Nordstroem KJV, et al., 2013. User guide for mapping-by-sequencing in Arabidopsis. Genome Biology, 14: R61. DOI: 10.1186/gb-2013-14-6-r61.
doi: 10.1186/gb-2013-14-6-r61 |
|
Jenks MA, Eigenbrode SD, Lemieux B, 2002. Cuticular waxes of Arabidopsis. The Arabidopsis Book, 1: e0016. DOI: 10.1199/tab.0016.
doi: 10.1199/tab.0016 |
|
Kosma DK, Bourdenx B, Bernard A, et al., 2009. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiology, 151: 1918-1929. DOI: 10.1104/pp.109. 141911.
doi: 10.1104/pp.109. 141911 |
|
Li C, Haslam TM, Kruger A, et al., 2018. The beta-Ketoacyl-CoA Synthase HvKCS1, Encoded by Cer-zh, plays a key role in synthesis of Barley Leaf Wax and germination of Barley Powdery Mildew. Plant and Cell Physiology, 59: 806-822. DOI: 10.1093/pcp/pcy020.
doi: 10.1093/pcp/pcy020 |
|
Li C, Chen G, Mishina K, et al., 2017. A GDSL-motif esterase/acyltransferase/lipase is responsible for leaf water retention in barley. Plant Direct, 1: e00025. DOI: 10.1002/pld3.25.
doi: 10.1002/pld3.25 |
|
Li C, Liu C, Ma X, et al., 2015. Characterization and genetic mapping of eceriferum-ym (cer-ym), a cutin deficient barley mutant with impaired leaf water retention capacity. Breeding Science, 65: 327-332. DOI: 10.1270/jsbbs.65.327.
doi: 10.1270/jsbbs.65.327 |
|
Lee SB, Suh MC, 2015. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Reports, 34: 557-572. DOI: 10.1007/s00299-015-1772-2.
doi: 10.1007/s00299-015-1772-2 |
|
Li C, Wang A, Ma X, et al., 2013. An eceriferum locus, cer-zv, is associated with a defect in cutin responsible for water retention in barley (Hordeum vulgare) leaves. Theoretical and Applied Genetics, 126: 637-646. DOI: 10.1007/s00122-012-2007-3.
doi: 10.1007/s00122-012-2007-3 |
|
Lu S, Zhao H, Des Marais DL, et al., 2012. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. Plant Physiology, 159: 930-944. DOI: 10.1104/pp.112.198697.
doi: 10.1104/pp.112.198697 |
|
Lundqvist U, Lundqvist A, 1988. Mutagen specificity in barley for 1580 eceriferum mutants localized to 79 loci. Hereditas, 108: 1-12. DOI: 10.1111/j.1601-5223.1988.tb00676.x.
doi: 10.1111/j.1601-5223.1988.tb00676.x |
|
Mascher M, Gundlach H, Himmelbach A, et al., 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature, 544: 427-433. DOI: 10.1038/nature22043.
doi: 10.1038/nature22043 |
|
Mascher M, Jost M, Kuon JE, et al., 2014. Mapping-by-sequencing accelerates forward genetics in barley. Genome Biology, 15: R78. DOI: 10.1186/gb-2014-15-6-r78.
doi: 10.1186/gb-2014-15-6-r78 |
|
Miller AC, Obholzer ND, Shah AN, et al., 2013. RNA-seq-based mapping and candidate identification of mutations from forward genetic screens. Genome Research, 23: 679-686. DOI: 10.1101/gr.147322.112.
doi: 10.1101/gr.147322.112 |
|
Mayer KF, Waugh R, Langridge P, et al., 2012. A physical, genetic and functional sequence assembly of the barley genome. Nature, 491: 711-716. DOI: 10.1038/nature11543.
doi: 10.1038/nature11543 |
|
Mayer KF, Martis M, Hedley PE, et al., 2011. Unlocking the barley genome by chromosomal and comparative genomics. The Plant Cell, 23: 1249-1263. DOI: 10.1105/tpc. 110.082537.
doi: 10.1105/tpc. 110.082537 |
|
Michelmore RW, Paran I, Kesseli RV, 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 88: 9828-9832. DOI: 10.1073/pnas. 88.21.9828.
doi: 10.1073/pnas. 88.21.9828 |
|
Nawrath C, 2006. Unraveling the complex network of cuticular structure and function. Current Opinion in Plant Biology, 9: 281-287. DOI: 10.1016/j.pbi.2006.03.001.
doi: 10.1016/j.pbi.2006.03.001 |
|
Pourkheirandish M, Hensel G, Kilian B, et al., 2015. Evolution of the grain dispersal system in barley. Cell, 162: 527-539. DOI: 10.1016/j.cell.2015.07.002.
doi: 10.1016/j.cell.2015.07.002 |
|
Pankin A, Campoli C, Dong X, et al., 2014. Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 Locus Modulating the circadian clock and photoperiodic flowering in barley. Genetics, 198: 383-396. DOI: 10.1534/genetics.114.165613.
doi: 10.1534/genetics.114.165613 |
|
Park JJ, Jin P, Yoon J, et al., 2010. Mutation in Wilted Dwarf and Lethal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Molecular Biology, 74: 91-103. DOI: 10.1007/s11103-010-9656-x.
doi: 10.1007/s11103-010-9656-x |
|
Richardson A, Wojciechowski T, Franke R, et al., 2007. Cuticular permeance in relation to wax and cutin development along the growing barley (Hordeum vulgare) leaf. Planta, 225: 1471-1481. DOI: 10.1007/s00425-006-0456-0.
doi: 10.1007/s00425-006-0456-0 |
|
Schneider LM, Adamski NM, Christensen CE, et al., 2016. The Cer-cqu gene cluster determines three key players in a beta-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. Journal of Experimental Botany, 67: 2715-2730. DOI: 10.1093/jxb/erw105.
doi: 10.1093/jxb/erw105 |
|
Schlötterer C, Tobler R, Kofler R, et al., 2014. Sequencing pools of individuals—mining genome-wide polymorphism data without big funding. Nature Reviews Genetics, 15: 749-763. DOI: 10.1038/nrg3803.
doi: 10.1038/nrg3803 |
|
Schneeberger K, Ossowski S, Lanz C, et al., 2009. SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nature Methods, 6: 550-551. DOI: 10.1038/nmeth0809-550.
doi: 10.1038/nmeth0809-550 |
|
Sato K, Nankaku N, Takeda K, 2009. A high-density transcript linkage map of barley derived from a single population. Heredity, 103: 110-117. DOI: 10.1038/hdy.2009.57.
doi: 10.1038/hdy.2009.57 |
|
Samuels L, Kunst L, Jetter R, 2008. Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annual Review of Plant Biology, 59: 683-707. DOI: 10.1146/annurev.arplant.59.103006.093219.
doi: 10.1146/annurev.arplant.59.103006.093219 |
|
Stadler LJ, 1928. Mutations in barley induced by X-rays and radium. Science, 68: 186-187. DOI: 10.1126/science.68. 1756.186.
doi: 10.1126/science.68. 1756.186 |
|
Taketa S, Amano S, Tsujino Y, et al., 2008. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proceedings of the National Academy of Sciences of the United States of America, 105: 4062-4067. DOI: 10.1073/pnas.0711034105.
doi: 10.1073/pnas.0711034105 |
|
Van Esse GW, Walla A, Finke A, et al., 2017. Six-Rowed Spike3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley. Plant Physiology, 174: 2397-2408. DOI: 10.1104/pp.17.00108.
doi: 10.1104/pp.17.00108 |
|
Wachsman G, Modliszewski JL, Valdes M, et al., 2017. A SIMPLE Pipeline for mapping point mutations. Plant Physiology, 174: 1307-1313. DOI: 10.1104/pp.17.00415.
doi: 10.1104/pp.17.00415 |
|
Yeats TH, Rose JK, 2013. The formation and function of plant cuticles. Plant Physiology, 163: 5-20. DOI: 10.1104/pp. 113.222737.
doi: 10.1104/pp. 113.222737 |
|
Zhou Q, Wang A, Duan R, et al., 2017a. Comparative transcriptome profile of the leaf elongation zone of wild barley (Hordeum spontaneum) eibi1 mutant and its isogenic wild type. Genetics and Molecular Biology, 40: 834-843. DOI: 10.1590/1678-4685-GMB-2016-0321.
doi: 10.1590/1678-4685-GMB-2016-0321 |
|
Zhou Q, Li C, Mishina K, et al., 2017b. Characterization and genetic mapping of the beta-diketone deficient eceriferum-b barley mutant. Theoretical and Applied Genetics, 130: 1169-1178. DOI: 10.1007/s00122-017-2877-5.
doi: 10.1007/s00122-017-2877-5 |
|
Zou C, Wang P, Xu Y, 2016. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnology Journal, 14: 1941-1955. DOI: 10.1111/pbi.12559.
doi: 10.1111/pbi.12559 |
No related articles found! |
|