Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (3): 180-188.doi: 10.3724/SP.J.1226.2020.00180

Previous Articles    

Fast genetic mapping in barley: case studies of cuticle mutants using RNA-sequencing

XiaoFeng Li1,2,Chao Li3,Qin Zhou4,GuoXiong Chen1,PengShan Zhao1()   

  1. 1.Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Shanghai Center for Plant Stress Biology, Centre for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
    4.Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2019-12-06 Accepted:2020-04-01 Online:2020-06-30 Published:2020-06-29
  • Contact: GuoXiong Chen,PengShan Zhao E-mail:guoxiong@lzb.ac.cn

Abstract:

Barley (Hordeum vulgare L.) is one of the earliest domesticated crop species and ranked as the fourth largest cereal production worldwide. Forward genetic studies in barley have greatly advanced plant genetics during the last century; however, most genes are identified by the conventional mapping method. Array genotyping and exome-capture sequencing have also been successfully used to target the causal mutation in barley populations, but these techniques are not widely adopted because of associated costs and partly due to the huge genome size of barley. This review summarizes three mapping cases of barley cuticle mutants in our laboratory with the help of RNA-sequencing. The causal mutations have been successfully identified for two of them and the target genes are located in the pericentromeric regions. Detailed information on the mapping-by-sequencing, mapping-and-sequencing, and RNA-sequencing assisted linkage mapping are presented and some limitations and challenges on the mapping assisted by RNA sequencing are also discussed. The alternative and elegant methods presented in this review may greatly accelerate forward genetics of barley mapping, especially for laboratories without large funding.

Key words: barley, mapping-by-sequencing, RNA-sequencing, cuticle, point mutations

Figure 1

Phenotype comparisons of three cuticle mutants with wild type plants. (a) detached leaves of eibi1.b and wild type after 1 h at room temperature, (b) phenotypes of Foma and cer-zv.342 plants, scale bars in both are 10 cm, (c) adult plants of Bowman and cer-b.2, scale bar is 10 cm"

Figure 2

Conventional mapping and mapping-by-sequencing of eibi1. (a) segregation analyses, (b) chromosome location, (c) rough and fine mapping results, (d) flowchart of mapping-by-sequencing of eibi1. The data in (a), (b), and (c) are from previous publications (Chen et al., 2004, 2009a, 2009b, 2011), while the data in d are from Zhou et al. (2017a). Markers in red color denote the cosegregation with the eibi1 locus"

Figure 3

Mapping-and-sequencing of cer-zv, cer-ym, and cer-yl. (a) segregation analyses, (b) chromosome location, (c) rough and fine mapping results of cer-zv.268, (d) mapping results of cer-ym.753, (e) mapping results of cer-yl.187, (f) flowchart of mapping-and-sequencing and validation of cer-zv, cer-ym, and cer-yl. The data in a-e are from previous publications (Li et al., 2013, 2015, 2017), while data in (f) are from Li et al. (2017). Markers in red color denote the cosegregation with the cer-zv.268 locus"

Figure 4

RNA-seq assisted linkage mapping of cer-b.2 BW-NIL. (a) segregation analyses, (b) rough mapping results of cer-b.2 BW107/BW-NIL, (c) polymorphic markers are developed by the comparison of 23-19 and cer-b.2 BW-NIL transcripts located in the candidate interval on the genome zipper chromosome 3H (Mayer et al., 2011) and the region surrounding MLOC_69561 from the barley physical map (Mayer et al., 2012), (d) rough and fine mapping results of cer-b.2 BW-NIL, CAPSs markers used for mapping are from the description in (c). The data in (a), (c), and (d), are from Zhou et al. (2017b), while data in (b) are from Druka et al. (2011). Markers in red color denote the cosegregation with the cer-b.2 BW-NIL locus. To be noted, the unigene dataset of 23-19 is from Zhou et al. (2017a)"

Abe A, Kosugi S, Yoshida K, et al., 2012. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 30: 174-178. DOI: 10.1038/nbt.2095.
doi: 10.1038/nbt.2095
Austin RS, Vidaurre D, Stamatiou G, et al., 2011. Next-generation mapping of Arabidopsis genes. Plant Journal, 67: 715-725. DOI: 10.1111/j.1365-313X.2011.04619.x.
doi: 10.1111/j.1365-313X.2011.04619.x
Anders S, Huber W, 2010. Differential expression analysis for sequence count data. Genome Biology, 11: R106. DOI: 10. 1186/gb-2010-11-10-r106.
doi: 10. 1186/gb-2010-11-10-r106
Aarts MG, Keijzer CJ, Stiekema WJ, et al., 1995. Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. The Plant Cell, 7: 2115-2127. DOI: 10.1105/tpc.7.12.2115.
doi: 10.1105/tpc.7.12.2115
Chen G, Komatsuda T, Ma JF, et al., 2011a. A functional cutin matrix is required for plant protection against water loss. Plant Signal and Behavior, 6: 1297-1299. DOI: 10.4161/psb.6.9.17507.
doi: 10.4161/psb.6.9.17507
Chen G, Komatsuda T, Ma JF, et al., 2011b. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. Proceedings of the National Academy of Sciences of the United States of America, 108: 12354-12359. DOI: 10.1073/pnas. 1108444108.
doi: 10.1073/pnas. 1108444108
Chen G, Komatsudu T, Pourkheirandish M, et al., 2009a. Mapping of the eibi1 gene responsible for the drought hypersensitive cuticle in wild barley (Hordeum spontaneum). Breeding Science, 59: 21-26. DOI: 10.1270/jsbbs.59.21.
doi: 10.1270/jsbbs.59.21
Chen G, Pourkheirandish M, Sameri M, et al., 2009b. Genetic targeting of candidate genes for drought sensitive gene eibi1 of wild barley (Hordeum spontaneum). Breeding Science, 59: 637-644. DOI: 10.1270/jsbbs.59.637.
doi: 10.1270/jsbbs.59.637
Close TJ, Bhat PR, Lonardi S, et al., 2009. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics, 10: 582. DOI: 10.1186/1471-2164-10-582.
doi: 10.1186/1471-2164-10-582
Chen G, Sagi M, Weining S, et al., 2004. Wild barley eibi1 mutation identifies a gene essential for leaf water conservation. Planta, 219: 684-693. DOI: 10.1007/s00425-004-1277-7.
doi: 10.1007/s00425-004-1277-7
Dominguez E, Herediaguerrero JA, Heredia A, 2017. The plant cuticle: old challenges, new perspectives. Journal of Experimental Botany, 68: 5251-5255. DOI: 10.1093/jxb/erx389.
doi: 10.1093/jxb/erx389
Druka A, Franckowiak J, Lundqvist U, et al., 2011. Genetic dissection of barley morphology and development. Plant Physiology, 155: 617-627. DOI: 10.1104/pp.110.166249.
doi: 10.1104/pp.110.166249
Franckowiak JD, Kleinhofs A, Lundqvist A, 2016. Descriptions of barley genetic stocks for 2016. Barley Genetics Newsletter, 46: 1-12.
Fekih R, Takagi H, Tamiru M, et al., 2013. MutMap+: genetic mapping and mutant identification without crossing in rice. PloS One, 8: e68529. DOI: 10.1371/journal.pone.0068529.
doi: 10.1371/journal.pone.0068529
Garroum I, Bidzinski P, Daraspe J, et al., 2016. Cuticular defects in Oryza sativa ATP-binding cassette transporter G31 mutant plants cause dwarfism, elevated defense responses and pathogen resistance. Plant and Cell Physiology, 57: 1179-1188. DOI: 10.1093/pcp/pcw066.
doi: 10.1093/pcp/pcw066
Giovannoni JJ, Wing RA, Ganal MW, et al., 1991. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Research, 19: 6553-6558. DOI: 10.1093/nar/19. 23.6553.
doi: 10.1093/nar/19. 23.6553
Hen-Avivi S, Savin O, Racovita RC, et al., 2016. A Metabolic Gene Cluster in the Wheat W1 and the Barley Cer-cqu Loci Determines beta-Diketone Biosynthesis and Glaucousness. The Plant Cell, 28: 1440-1460. DOI: 10.1105/tpc.16.00197.
doi: 10.1105/tpc.16.00197
Hill JT, Demarest BL, Bisgrove BW, et al., 2013. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Research, 23: 687-697. DOI: 10.1101/gr.146936.112.
doi: 10.1101/gr.146936.112
Ingram G, Nawrath C, 2017. The roles of the cuticle in plant development: organ adhesions and beyond. Journal of Experimental Botany, 68: 5307-5321. DOI: 10.1093/jxb/erx313.
doi: 10.1093/jxb/erx313
James GV, Patel V, Nordstroem KJV, et al., 2013. User guide for mapping-by-sequencing in Arabidopsis. Genome Biology, 14: R61. DOI: 10.1186/gb-2013-14-6-r61.
doi: 10.1186/gb-2013-14-6-r61
Jenks MA, Eigenbrode SD, Lemieux B, 2002. Cuticular waxes of Arabidopsis. The Arabidopsis Book, 1: e0016. DOI: 10.1199/tab.0016.
doi: 10.1199/tab.0016
Kosma DK, Bourdenx B, Bernard A, et al., 2009. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiology, 151: 1918-1929. DOI: 10.1104/pp.109. 141911.
doi: 10.1104/pp.109. 141911
Li C, Haslam TM, Kruger A, et al., 2018. The beta-Ketoacyl-CoA Synthase HvKCS1, Encoded by Cer-zh, plays a key role in synthesis of Barley Leaf Wax and germination of Barley Powdery Mildew. Plant and Cell Physiology, 59: 806-822. DOI: 10.1093/pcp/pcy020.
doi: 10.1093/pcp/pcy020
Li C, Chen G, Mishina K, et al., 2017. A GDSL-motif esterase/acyltransferase/lipase is responsible for leaf water retention in barley. Plant Direct, 1: e00025. DOI: 10.1002/pld3.25.
doi: 10.1002/pld3.25
Li C, Liu C, Ma X, et al., 2015. Characterization and genetic mapping of eceriferum-ym (cer-ym), a cutin deficient barley mutant with impaired leaf water retention capacity. Breeding Science, 65: 327-332. DOI: 10.1270/jsbbs.65.327.
doi: 10.1270/jsbbs.65.327
Lee SB, Suh MC, 2015. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Reports, 34: 557-572. DOI: 10.1007/s00299-015-1772-2.
doi: 10.1007/s00299-015-1772-2
Li C, Wang A, Ma X, et al., 2013. An eceriferum locus, cer-zv, is associated with a defect in cutin responsible for water retention in barley (Hordeum vulgare) leaves. Theoretical and Applied Genetics, 126: 637-646. DOI: 10.1007/s00122-012-2007-3.
doi: 10.1007/s00122-012-2007-3
Lu S, Zhao H, Des Marais DL, et al., 2012. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. Plant Physiology, 159: 930-944. DOI: 10.1104/pp.112.198697.
doi: 10.1104/pp.112.198697
Lundqvist U, Lundqvist A, 1988. Mutagen specificity in barley for 1580 eceriferum mutants localized to 79 loci. Hereditas, 108: 1-12. DOI: 10.1111/j.1601-5223.1988.tb00676.x.
doi: 10.1111/j.1601-5223.1988.tb00676.x
Mascher M, Gundlach H, Himmelbach A, et al., 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature, 544: 427-433. DOI: 10.1038/nature22043.
doi: 10.1038/nature22043
Mascher M, Jost M, Kuon JE, et al., 2014. Mapping-by-sequencing accelerates forward genetics in barley. Genome Biology, 15: R78. DOI: 10.1186/gb-2014-15-6-r78.
doi: 10.1186/gb-2014-15-6-r78
Miller AC, Obholzer ND, Shah AN, et al., 2013. RNA-seq-based mapping and candidate identification of mutations from forward genetic screens. Genome Research, 23: 679-686. DOI: 10.1101/gr.147322.112.
doi: 10.1101/gr.147322.112
Mayer KF, Waugh R, Langridge P, et al., 2012. A physical, genetic and functional sequence assembly of the barley genome. Nature, 491: 711-716. DOI: 10.1038/nature11543.
doi: 10.1038/nature11543
Mayer KF, Martis M, Hedley PE, et al., 2011. Unlocking the barley genome by chromosomal and comparative genomics. The Plant Cell, 23: 1249-1263. DOI: 10.1105/tpc. 110.082537.
doi: 10.1105/tpc. 110.082537
Michelmore RW, Paran I, Kesseli RV, 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 88: 9828-9832. DOI: 10.1073/pnas. 88.21.9828.
doi: 10.1073/pnas. 88.21.9828
Nawrath C, 2006. Unraveling the complex network of cuticular structure and function. Current Opinion in Plant Biology, 9: 281-287. DOI: 10.1016/j.pbi.2006.03.001.
doi: 10.1016/j.pbi.2006.03.001
Pourkheirandish M, Hensel G, Kilian B, et al., 2015. Evolution of the grain dispersal system in barley. Cell, 162: 527-539. DOI: 10.1016/j.cell.2015.07.002.
doi: 10.1016/j.cell.2015.07.002
Pankin A, Campoli C, Dong X, et al., 2014. Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 Locus Modulating the circadian clock and photoperiodic flowering in barley. Genetics, 198: 383-396. DOI: 10.1534/genetics.114.165613.
doi: 10.1534/genetics.114.165613
Park JJ, Jin P, Yoon J, et al., 2010. Mutation in Wilted Dwarf and Lethal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Molecular Biology, 74: 91-103. DOI: 10.1007/s11103-010-9656-x.
doi: 10.1007/s11103-010-9656-x
Richardson A, Wojciechowski T, Franke R, et al., 2007. Cuticular permeance in relation to wax and cutin development along the growing barley (Hordeum vulgare) leaf. Planta, 225: 1471-1481. DOI: 10.1007/s00425-006-0456-0.
doi: 10.1007/s00425-006-0456-0
Schneider LM, Adamski NM, Christensen CE, et al., 2016. The Cer-cqu gene cluster determines three key players in a beta-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. Journal of Experimental Botany, 67: 2715-2730. DOI: 10.1093/jxb/erw105.
doi: 10.1093/jxb/erw105
Schlötterer C, Tobler R, Kofler R, et al., 2014. Sequencing pools of individuals—mining genome-wide polymorphism data without big funding. Nature Reviews Genetics, 15: 749-763. DOI: 10.1038/nrg3803.
doi: 10.1038/nrg3803
Schneeberger K, Ossowski S, Lanz C, et al., 2009. SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nature Methods, 6: 550-551. DOI: 10.1038/nmeth0809-550.
doi: 10.1038/nmeth0809-550
Sato K, Nankaku N, Takeda K, 2009. A high-density transcript linkage map of barley derived from a single population. Heredity, 103: 110-117. DOI: 10.1038/hdy.2009.57.
doi: 10.1038/hdy.2009.57
Samuels L, Kunst L, Jetter R, 2008. Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annual Review of Plant Biology, 59: 683-707. DOI: 10.1146/annurev.arplant.59.103006.093219.
doi: 10.1146/annurev.arplant.59.103006.093219
Stadler LJ, 1928. Mutations in barley induced by X-rays and radium. Science, 68: 186-187. DOI: 10.1126/science.68. 1756.186.
doi: 10.1126/science.68. 1756.186
Taketa S, Amano S, Tsujino Y, et al., 2008. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proceedings of the National Academy of Sciences of the United States of America, 105: 4062-4067. DOI: 10.1073/pnas.0711034105.
doi: 10.1073/pnas.0711034105
Van Esse GW, Walla A, Finke A, et al., 2017. Six-Rowed Spike3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley. Plant Physiology, 174: 2397-2408. DOI: 10.1104/pp.17.00108.
doi: 10.1104/pp.17.00108
Wachsman G, Modliszewski JL, Valdes M, et al., 2017. A SIMPLE Pipeline for mapping point mutations. Plant Physiology, 174: 1307-1313. DOI: 10.1104/pp.17.00415.
doi: 10.1104/pp.17.00415
Yeats TH, Rose JK, 2013. The formation and function of plant cuticles. Plant Physiology, 163: 5-20. DOI: 10.1104/pp. 113.222737.
doi: 10.1104/pp. 113.222737
Zhou Q, Wang A, Duan R, et al., 2017a. Comparative transcriptome profile of the leaf elongation zone of wild barley (Hordeum spontaneum) eibi1 mutant and its isogenic wild type. Genetics and Molecular Biology, 40: 834-843. DOI: 10.1590/1678-4685-GMB-2016-0321.
doi: 10.1590/1678-4685-GMB-2016-0321
Zhou Q, Li C, Mishina K, et al., 2017b. Characterization and genetic mapping of the beta-diketone deficient eceriferum-b barley mutant. Theoretical and Applied Genetics, 130: 1169-1178. DOI: 10.1007/s00122-017-2877-5.
doi: 10.1007/s00122-017-2877-5
Zou C, Wang P, Xu Y, 2016. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnology Journal, 14: 1941-1955. DOI: 10.1111/pbi.12559.
doi: 10.1111/pbi.12559
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!