Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (5): 394-407.doi: 10.3724/SP.J.1226.2021.21033.

Previous Articles    

Numerical simulation of electroosmosis in unsaturated compacted clay

KangWei Tang,Feng Zhang(),DeCheng Feng,GuanFu Wang   

  1. School of Transportation Science and Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China
  • Received:2021-05-06 Accepted:2021-09-08 Online:2021-10-31 Published:2021-12-03
  • Contact: Feng Zhang E-mail:zhangf@hit.edu.cn

Abstract:

The moisture content of a road subgrade in cold regions will increase after freeze-thaw cycles, resulting in subgrade strength and stiffness losses. Electroosmosis is widely used in treating saturated soft soils to decrease the moisture content. The induced moisture migration during electroosmosis in unsaturated soil is much more complex than that of saturated soil because of a series of nonlinear changes in soil properties. This study first uses an exponential function to characterize the relationship between electroosmotic permeability and saturation degree. Then, a one-dimensional model is developed to simulate the electroosmosis-induced moisture migration in unsaturated soil. Simulation results show that electroosmosis reduces the saturation degree of the unsaturated soil, indicating that it can be applied to subgrade dewatering. Key parameters such as soil pore size distribution coefficient, air entry value, and effective voltage significantly affect moisture migration. Electroosmotic properties of unsaturated soils are extremely important to the efficiency of electroosmosis.

Key words: electro-osmosis, unsaturated clay, moisture migration, numerical simulation

Figure 1

One-dimensional model for electroosmosis in unsaturated soil: (a) configuration of electroosmosis; (b) moisture migration through a differential unit"

Table 1

Geotechnical properties and calculation parameters of clay soil"

ParameterValue
Pore size distribution coefficient n2.2
Symmetry parameters of soil-water characteristic curve m1-1/n
Reciprocal of air entry value α0.03
Relative electro-osmotic permeability parameter m20.4
Soil conductivity parameter A0.077858
Soil conductivity parameter B2.051

Table 2

Geotechnical properties and calculation parameters of clay soil"

PropertyValue
Specific gravity2.75
Liquid limit36.98%
Plastic limit25.19%
Plastic index11.79
Maximum dry density1.74 g/cm3
Optimum moisture content17.4%
Initial void ratio0.99
Moisture at saturation50.0%
Residual moisture0.3%
Saturated electroosmotic permeability6ⅹ10-7 m2/(V·s)
Saturated hydraulic permeability5ⅹ10-7 m/s

Figure 2

Custom-made apparatus for one-dimensional electroosmosis test on unsaturated soil (length unit: mm)"

Figure 3

Effective voltage versus time recorded during the electroosmosis experiment"

Figure 4

Comparison of moisture content versus time between the numerical simulation and experiment"

Figure 5

Comparison of the drainage between the model simulation and experiment"

Table 3

Parameter analysis of electroosmosis in unsaturated clay"

ParameterValue
Pore size distribution coefficient n2.2, 5, 10, respectively
Symmetry parameters of soil-water characteristic curve m1-1/n
Reciprocal of air entry value α (k/Pa)0.01, 0.03, 0.05, respectively
Relative electro-osmotic permeability parameter m20.4
Soil conductivity parameter A0.077858
Soil conductivity parameter B2.051
Effective voltage Ue (V)10, 30, 40, respectively

Figure 6

Moisture content change and drainage development versus time for different values of n"

Figure 7

Moisture content change and drainage development versus time for different values of α"

Figure 8

Moisture content change and drainage development versus time for different values of Ue"

Figure 9

Moisture content change and drainage development versus time for different values of m2"

Figure 10

Moisture distribution and average saturation after electroosmosis for different values of m2"

Arika CN, Canelon DJ, Nieber JL, 2009. Subsurface drainage manual for pavements in Minnesota. Center for Transportation Studies. DOI: rrb.org/media/reports/200917.pdf.
doi: rrb.org/media/reports/200917.pdf
Casagrande L, 1949. Electro-osmosis in soil. Géotechnique, 1(3): 159-177. DOI: 10.1680/geot.1949.1.3.159.
doi: 10.1680/geot.1949.1.3.159
Chen JL, Al-Abed SR, Bryndzia LT, et al., 1999. Cation transport and partitioning during a field test. Water Resources Research, 35(12): 3841-3851. DOI: 10.1029/1999WR900261.
doi: 10.1029/1999WR900261
Chew SH, Karunaratne GP, 2004. A field trial for soft clay consolidation using electric vertical drains. Geotext and Geomembranes, 22(1-2): 17-35. DOI: 10.1016/S0266-1144(03)00049-9.
doi: 10.1016/S0266-1144(03)00049-9
Deng A, Zhou YD, 2016. Modeling electroosmosis and surcharge preloading consolidation. II: validation and simulation results. Journal of Geotechnical and Geoenvironmental Engineering, 142(4): 04015094. DOI: 10.1061/(ASCE)GT.1943-5606.000141.
doi: 10.1061/(ASCE)GT.1943-5606.000141
Esrig MI, 1968. Pore pressures, consolidation and electrokinetics. ASCE Soil Mechanics and Foundation Division Journal, 94(4): 899-922. DOI: 10.1061/JSFEAQ.0001178.
doi: 10.1061/JSFEAQ.0001178
Eykholt GR, 1997. Development of pore pressures by nonuniform electroosmosis in clays. Journal of Hazardous Materials, 55(1-3): 171-186. DOI: 10.1016/S0304-3894(97)00022-8.
doi: 10.1016/S0304-3894(97)00022-8
Feng J, Wu XY, Meng SW, 2017. Study on the fractal characteristics of soil water characteristic curves of unsaturated clay soil. Journal of Railway Science and Engineering, 14(07): 95-101. DOI: 10.19713/j.cnki.43-1423/u.2017.07.013.
doi: 10.19713/j.cnki.43-1423/u.2017.07.013
Fourie AB, CJFP Jones, 2010. Improved estimates of power consumption during dewatering of mine tailings using electrokinetic geosynthetics (EKGs). Geotextiles & Geomembranes, 28(2): 181-190. DOI: 10.1016/j.geotexmem.2009.10.007.
doi: 10.1016/j.geotexmem.2009.10.007
Glendinning S, Lamont-Black J, CJFP Jones, 2007. Treatment of sewage sludge using electrokinetic geosynthetics. Journal of Hazardous Materials, 139(3): 491-499. DOI: 10.1016/j.jhazmat.2006.02.046.
doi: 10.1016/j.jhazmat.2006.02.046
Hu L, Wu H, 2014. Mathematical model of electroosmotic consolidation for soft ground improvement. Géotechnique, 64(2): 155-164. DOI: 10.1680/geot.13.P.096.
doi: 10.1680/geot.13.P.096
Hu L, Wu W, Wu H, 2012. Numerical model of electro-osmotic consolidation in clay. Géotechnique, 62(6): 537-541. DOI: 10.1680/geot.11.T.008.
doi: 10.1680/geot.11.T.008
Karunaratne GP, 2011. Prefabricated and electrical vertical drains for consolidation of soft clay. Geotextiles and Geomembranes, 29(4): 391-401. DOI: 10.1016/j.geotexmem.2010.12.005.
doi: 10.1016/j.geotexmem.2010.12.005
Khoury N, Brooks R, Boeni SY, et al., 2012. Variation of resilient modulus, strength and modulus of elasticity of stabilized soils with postcompaction moisture contents. Journal of Materials in Civil Engineering, 25(2): 160-166. DOT: 10.1061/(ASCE)MT.1943-5533.0000574.
Lamont BJ, Jones CP, Alder D, 2016. Electrokinetic strengthening of slopes-case history. Geotextiles and Geomembranes, 44(3): 319-331. DOI: 10.1016/j.geotexmem.2016.01.001.
doi: 10.1016/j.geotexmem.2016.01.001
Lewis RW, Humpheson C, 1973. Numerical analysis of electroosmotic flow in soils. Journal of the Soil Mechanics & Foundations Division, 99(3): 603-616. DOI: 10.1016/0148-9062(74)91583-6.
doi: 10.1016/0148-9062(74)91583-6
Lima AT, Kleingeld PJ, Katja H, et al., 2011. Removal of PAHs from contaminated clayey soil by means of electroosmosis. Separation and Purification Technology, 79(2): 221-229. DOI: 10.1016/j.seppur.2011.02.021.
doi: 10.1016/j.seppur.2011.02.021
Lima AT, Ottosen LM, Katja H, et al., 2012. Assessing PAH removal from clayey soil by means of electroosmosis and electrodialysis. Science of the Total Environment, 435-436(2012): 1-6. DOI: 10.1016/j.scitotenv.2012.07.010.
doi: 10.1016/j.scitotenv.2012.07.010
Lin C, Zhang X, 2018. A bio-wicking system to dehydrate road embankment. Journal of Cleaner Production, 196: 902-915. DOI: 10.1016/j.jclepro.2018.06.053.
doi: 10.1016/j.jclepro.2018.06.053
Lo KY, Ho KS, 1991. The effects of electroosmotic field treatment on the soil properties of a soft sensitive clay. Canadian Geotechnical Journal, 28(6): 763-770. DOI: 10.1139/t91-093.
doi: 10.1139/t91-093
Mahmoud A, Hoadley AFA, Conrard JB, et al., 2016. Influence of process operating parameters on dryness level and energy saving during wastewater sludge electro-dewatering. Water Research, 10: 109-123. DOI: 10.1016/j.watres.2016.07.016.
doi: 10.1016/j.watres.2016.07.016
Morris DV, Sydney FH, Caldwell JA, 1985. Improvement of sensitive silty clay by electroosmosis. Canadian Geotech, 22(1): 17-24. DOI: 10.1139/t86-014.
doi: 10.1139/t86-014
Murdoch LC, Chen J, 1997. Effects of conductive fractures during in-situ electroosmosis. Journal of Hazardous Materials, 55(1-3): 239-262. DOI: 10.1016/S0304-3894(97)00026-5.
doi: 10.1016/S0304-3894(97)00026-5
Ou CY, Chien SC, Chang HH, 2009. Soil improvement using electroosmosis with the injection of chemical solutions field tests. Canadian Geotechnical Journal, 46(6): 727-733. DOI: 10.1139/T09-012.
doi: 10.1139/T09-012
Schultz DS, 1997. Electroosmosis technology for soil remediation: laboratory results, field trial, and economic modeling. Journal of Hazardous Materials, 55(1-3): 81-91. DOI: 10.1016/S0304-3894(97)00014-9.
doi: 10.1016/S0304-3894(97)00014-9
Shang JQ, 1998. Electroosmosis-enhanced preloading consolidation via vertical drains. Candian Geotech, 35(3): 491-499. DOI: 10.1139/cgj-35-3-491.
doi: 10.1139/cgj-35-3-491
Shen Y, Feng JT, Ma YH, et al., 2019. Two-dimensional electroosmotic consolidation theory of nonlinear soil voltage distribution characteristics. Advances in Civil Engineering, 2019(2): 1-10. DOI: 10.1155/2019/7354873.
doi: 10.1155/2019/7354873
Su JQ, Wang Z, 2003.The two-dimensional consolidation theory of electroosmosis. Géotechnique, 53(8): 759-763. DOI: 10.1680/geot.2003.53.8.759.
doi: 10.1680/geot.2003.53.8.759
Tinjum JM, Benson CH, Boltz LR, 1997. Soil-water characteristics curves for compacted clays. Journal of Geotechnical & Geoenvironmental Engineering, (11): 1060-1069. DOI: 10.1061/(ASCE)1090-0241(1997)123:11(1060).
doi: 10.1061/(ASCE)1090-0241(1997)123:11(1060
Wan TY, Mitchell JK, 1976. Electroosmotic consolidation of soil. Journal of the Geotechnical Engineering Division, 102(5): 473-91. DOI: 10.1016/0148-9062(76)91564-3.
doi: 10.1016/0148-9062(76)91564-3
Wang J, Zhao R, Cai YQ, et al., 2018. Vacuum preloading and electroosmosis consolidation of dredged slurry pre-treated with flocculants. Engineering Geology, 246: 123-130. DOI: 10.1016/j.enggeo.2018.09.024.
doi: 10.1016/j.enggeo.2018.09.024
Wang LJ, Huang PH, Liu SH, et al., 2020. Analytical solution for nonlinear consolidation of combined electroosmosis-vacuum-surcharge preloading. Computers and Geotechnics, 121: 103484. DOI: 10.1016/j.compgeo.2020.103484.
doi: 10.1016/j.compgeo.2020.103484
Wang LJ, Wang YM, Liu SH, et al., 2019. Analytical solution for one-dimensional vertical electroosmotic drainage under unsaturated conditions. Computers and Geotechnics, 105(6): 27-36. DOI: 10.1016/j.compgeo.2018.09.011.
doi: 10.1016/j.compgeo.2018.09.011
Wittle JK, Lawerence MZ, Doering F, et al., 2008. Enhanced stabilization of dikes and levees using direct current technology. GeoCongress, 3: 686-693. DOI:10.1061/40971(310)85.
doi: 10.1061/40971(310)85
Wu H, Hu LM, Wen QB, 2017. Numerical simulation of electroosmotic consolidation coupling non-linear variation of soil parameters. Computers and Geosciences, 103(6): 92-98. DOI: 10.1016/j.cageo.2017.03.002.
doi: 10.1016/j.cageo.2017.03.002
Wu H, Qi WG, Hu LM, et al., 2017. Electroosmotic consolidation of soil with variable compressibility, hydraulic conductivity and electroosmosis conductivity. Computers and Geotechnics, 85: 126-138. DOI: 10.1016/j.compgeo.2016.12.026.
doi: 10.1016/j.compgeo.2016.12.026
Yuan J, Hicks MA, 2013. Large deformation elastic electroosmosis consolidation of clays. Computers and Geotechnics, 54(10): 60-68. DOI: 10.1016/j.compgeo.2013.05.012.
doi: 10.1016/j.compgeo.2013.05.012
Yuan J, Hicks MA, 2016. Numerical simulation of elasto-plastic electroosmosis consolidation at large strain. Acta Geotechnica, 11(1): 127-143. DOI: 10.1007/s11440-015-0366-z.
doi: 10.1007/s11440-015-0366-z
Yuan J, Hicks MA, 2016. Influence of gas generation in electroosmosis consolidation. International Journal for Numerical and Analytical Methods in Geomechanics, 40(11): 1570-1593. DOI: 10.1002/nag.2497.
doi: 10.1002/nag.2497
Zhao XD, Yang L, Gong WH, 2020. Analytical solution for one-dimensional electroosmotic consolidation of double-layered system. Computers and Geotechnics, 122: 103496. DOI: 10.1016/j.compgeo.2020.103496.
doi: 10.1016/j.compgeo.2020.103496
Zhou YD, An D, Fu JY, 2019. Modelling electroosmosis-surcharge preloading combined consolidation of unsaturated soils. Computers and Geotechnics, 114: 103145. DOI: 10.1016/j.compgeo.2019.103145.
doi: 10.1016/j.compgeo.2019.103145
Zhou YD, Deng A, Wang C, 2013. Finite-difference model for one-dimensional electroosmotic consolidation. Computers and Geotechnics, 54(10): 152-165. DOI: 10.1016/j.compgeo.2013.06.003.
doi: 10.1016/j.compgeo.2013.06.003
Zhou YD, Deng A, 2019. Modelling combined electroosmosis-vacuum-surcharge preloading consolidation considering large-scale deformation. Computers and Geotechnics, 109(2019): 46-57. DOI: 10.1016/j.compgeo.2019.103145.
doi: 10.1016/j.compgeo.2019.103145
[1] WenQiang Zhang,YongHong Niu. Numerical simulations on cutting of frozen soil using HJC Model [J]. Sciences in Cold and Arid Regions, 2020, 12(3): 134-143.
[2] Ivan A. Panteleev, Anastasiia A. Kostina, Oleg A. Plekhov, Lev Yu. Levin. Numerical simulation of artificial ground freezing in a fluid-saturated rock mass with account for filtration and mechanical processes [J]. Sciences in Cold and Arid Regions, 2017, 9(4): 363-377.
[3] Xin Zhou, Qing Wang, XueFei Zhang, TianWen Yu, XuDong Zhang. Basic properties of saline soil in Da'an, western Jilin, China [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 568-572.
[4] Chang Yuan, FuJun Niu, QiHao Yu, XinBin Wang, Lei Guo, YanHui You. Numerical analysis of applying special pavements to solve the frost heave diseases of high-speed railway roadbedsin seasonally frozen ground regions [J]. Sciences in Cold and Arid Regions, 2015, 7(4): 340-347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!