Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (3): 125-133.doi: 10.3724/SP.J.1226.2020.00125

    Next Articles

A modified numerical model for moisture-salt transport in unsaturated sandy soil under evaporation

Wei Wen1,2,YuanMing Lai1,2(),ZheMin You1   

  1. 1.State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-12-09 Accepted:2020-05-26 Online:2020-06-30 Published:2020-06-29
  • Contact: YuanMing Lai E-mail:ymlai@lzb.ac.cn

Abstract:

Soil salinization, caused by salt migration and accumulation underneath the soil surface, will corrode structures. To analyze the moisture-salt migration and salt precipitation in soil under evaporation conditions, a mathematical model consisting of a series of theoretical equations is briefly presented. The filling effect of precipitated salts on tortuosity factor and evaporation rate are taken into account in relevant equations. Besides, a transition equation to link the solute transport equation before and after salt precipitation is proposed. Meanwhile, a new relative humidity equation deduced from Pitzer ions model is used to modify the vapor transport flux equation. The results show that the calculated values are in good agreement with the published experimental data, especially for the simulation of volume water content and evaporation rate of Toyoura sand, which confirm the reliability and applicability of the proposed model.

Key words: moisture-salt transport, precipitated salt, Pitzer ions model, relative humidity, evaporation rate

Figure 1

Salt layer containing soil in Qaidam Basin"

Table1

Parameters values employed in numerical simulation"

ParametersMasa loamy sandToyoura sandUnitProperties
θs0.430.443m3/m3Porosity
θr0.031-m3/m3Residual volumetric water content
α1-4.2-2.651/mSoil water characteristic curve parameter
α2--2.11/mSoil water characteristic curve parameter
w-0.748-Soil water characteristic curve parameter
n11.3733.6-Soil water characteristic curve parameter
n2-1.84-Soil water characteristic curve parameter
m0.32--Soil water characteristic curve parameter
φ0-1×10-5-mResidual matric head
φ-0.75-0.4mInitial matric head
KS5.28×10-60.2×10-4m/sSaturated hydraulic conductivity
ak-1.57-Relative permeability parameter
bk-0.023-Relative permeability parameter
λ0.00140.0023mDispersity
T298.15298.15KTemperature
ra9064s/mAerodynamic resistance
C033kg/m3Initial salt concentration
Csat231231kg/m3Salt solubility
RHa0.250.4-Air relative humidity

Figure 3

Changes of relative Humidity with matric head and solute concentration"

Figure 2

Soil water characteristic curve for Masa loamy sand and Toyoura sand"

Figure 4

The osmotic coefficient of solution at different solute concentration"

Figure 5

Schematic diagram of the process of precipitated salt filling the soil pores"

Figure 6

Comparison between the measured and predicted evaporation rate for both soils"

Figure 7

Comparison between the measured and predicted volumetric water contents"

Figure 8

Concentration distributions during the course of evaporation for different sands"

Figure 9

Precipitated salt in soils at different times for both sands"

Bear J, 1972. Dynamics of Fluids in Porous Media. Dover, Mineola, N.Y.
Benavente D, Cueto N, Martínez-Martínez J, et al., 2007.The influence of petrophysical properties on the salt weathering of porous building rocks. Environmental Geology, 52: 215. DOI: 10.1007/s00254-006-0475-y.
doi: 10.1007/s00254-006-0475-y
Campbell GS, 1985. Soil physics with basic transport models for soil-plant systems. Elsevier, New York.
Cardell C, Rivas T, Mosquera MJ, et al., 2010. Patterns of damage in igneous and sedimentary rocks under conditions simulating sea-salt weathering. Earth Surface Processes & Landforms, 28: 1-14. DOI: 10.1002/esp.408.
doi: 10.1002/esp.408
Cass A, Campbell GS, Jones TL, 1984. Enhancement of thermal water vapor diffusion in soil1. Soil Science Society of America Journal, 48(1): 25. DOI: 10.2136/sssaj1984. 03615995004800010005x.
doi: 10.2136/sssaj1984. 03615995004800010005x
Daamen CC, Simmonds LP, 1996. Measurement of evaporation from bare soil and its estimation using surface resistance. Water Resources Research, 32: 1393-1402. DOI: 10.1029/96wr00268.
doi: 10.1029/96wr00268
Espinosa RM, Franke L, Deckelmann G, 2008. Phase changes of salts in porous materials Crystallization, hydration and deliquescence. Construction and Building Materials, 22: 1758-1773. DOI: 10.1016/j.conbuildmat.2007.05.005.
doi: 10.1016/j.conbuildmat.2007.05.005
Fujimaki H, Shimano T, Inoue M, 2006. Effect of a salt crust on evaporation from a bare saline soil. Vadose Zone Journal, 5: 1246. DOI: 10.2136/vzj2005.0144.
doi: 10.2136/vzj2005.0144
Gran M, Carrera J, Olivella S, 2011. Modeling evaporation processes in a saline soil from saturation to oven dry conditions. Hydrology and Earth System Sciences, 15: 2077-2089. DOI: 10.5194/hess-15-2077-2011.
doi: 10.5194/hess-15-2077-2011
Jambhekar VA, Helmig R, Schröder N, 2015. Free-flow-porous-media coupling for evaporation-driven transport and precipitation of salt in soil. Transport in Porous Media.DOI: 10.1007/s11242-015-0516-7.
doi: 10.1007/s11242-015-0516-7
Kang Q, Nie F, Li SN, 2016. Research of salt migration characteristics and anti-salt technology of saline soil subgrade in the south of Xinjiang. Science Technology and Engineering, 16(5): 97-103. (in Chinese)
Karpachevskii LO, Yakovleva LV, Fedotova AV, 2008. Soil Salinization of the Baer Mounds in the Volga River Delta. Eurasian Soil Science, 41: 135-139. DOI: 10.1134/S1064229308020038.
doi: 10.1134/S1064229308020038
Kasenow, M, 2002. Determination of Hydraulic Conductivity from Grain Size Analysis. In: Water Resources Publications (Ed.). Water Resources Publications. Littleton, Colorado.
Kestin J, Khalifa HE, Correia RJ, 1981. Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature range 20-150 °C and the pressure range 0.1-35 MPa. Journal of Physical and Chemical Reference Data, 10: 71. DOI: 10.1063/1.555641.
doi: 10.1063/1.555641
Kimball BA, Jackson RD, Reginato RJ, et al., 1976. Comparison of Field-measured and Calculated Soil-heat Fluxes 1. Soil Science Society of America Journal, 40: 18-25. DOI: 10.2136/sssaj1976.03615995004000010010x.
doi: 10.2136/sssaj1976.03615995004000010010x
Klotz D, Seiler KP, Moser H, 1980. Dispersity and velocity relationship from laboratory and field experiments. Journal of Hydrology, 45: 169-184. DOI: 10.1016/0022-1694(80)90018-9.
doi: 10.1016/0022-1694(80)90018-9
Low PF, 1955. Effect of osmotic pressure on diffusion rate of water. Soil Science, 80: 95-100. DOI: 10.1097/00010694-195508000-00002.
doi: 10.1097/00010694-195508000-00002
Maraqa MA, Wallace RB, Voice TC, 1997. Effects of degree of water saturation on dispersity and immobile water in sandy soil columns. Journal of Contaminant Hydrology, 25: 199-218. DOI: 10.1016/s0169-7722 (96)00032-0.
doi: 10.1016/s0169-7722 (96)00032-0
Millington RJ, Quirk JP, 1961. Permeability of porous solids. Transactions of the Faraday Society, 5: 1200-1207. DOI: 10.1039/tf9615701200.
doi: 10.1039/tf9615701200
Nachshon U, Weisbrod N, 2015. Beyond the salt crust, on combined evaporation and subflorescent salt precipitation in porous media. Transport in Porous Media, 110: 295-310. DOI: 10.1007/s11242-015-0514-9.
doi: 10.1007/s11242-015-0514-9
Nassar IN, Horton R, 1999. Salinity and compaction effects on soil water evaporation and water and solute distributions. Soil Science Society of America Journal, 63: 752. DOI: 10.2136/sssaj1999.634752x.
doi: 10.2136/sssaj1999.634752x
Nassar IN, Horton R, 1989. Water transport in unsaturated nonisothermal salty soil II: Theoretical development. Soil Science Society of America Journal, 53: 1330-1337. DOI: 10.2136/sssaj1989.03615995005300050005x.
doi: 10.2136/sssaj1989.03615995005300050005x
Noggle JH, 1985. Physical Chemistry. Little, Brown and Co Boston.
Philip JR, Vries DAD, 1957. Moisture movement in porous materials under temperature gradients. Eos, Transactions American Geophysical Union, 38(2): 222-232. DOI: 10. 1029/TR038i002p00222.
doi: 10. 1029/TR038i002p00222
Pitzer KS, Mayorga G, 1973. Thermodynamics of electrolytes, II: Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. The Journal of Physical Chemistry, 77: 2300-2308. DOI: 10.1021/j100638a009.
doi: 10.1021/j100638a009
Shao L, 2012. Study on subgrade water and salt migration law and cut off layer setting technology in Qarhan salt lake area. M.S. thesis, Chang'an University. (in Chinese)
Robinson RA, Stokes RH, 1955. Electrolyte Solutions. Butterworths Scientific Publications, pp. 28.
Van-Camp L, Bujarrabal B, Gentile AR,et al., 2004. Varadjous, Reports of the Tech. Working Groups Established Under the Thematic Strategy for Soil Protection. In: Tech. Rep., EUR 21319 EN/2, Office for Official Publications of the European Communities, Luxembourg, pp. 72.
Voss CI, Provost AM, 2002. A model for Saturated-Unsaturated, Variable-Density Ground-Water Flow with Solute or Energy Transport. Water-Resources Investigations Report, 02-4231. USGS, Reston, VA.
Wan J, 2017. A study on the moisture content migration and subgrade treatment measures of saline soil in the western region of Jilin Province. M.S. Thesis, Changchun Institute of Technology. (in Chinese)
Wang XL, 2014. Cause of Roadbed Frothing Saline Soil Area. M.S. Thesis, Chongqing Jiaotong University. (in Chinese)
Wen W, Lai YM, You ZM, et al., 2020. Relative humidity analysis of salinized unsaturated soil based on Pitzer model. Rock and Soil Mechanics, 2020(6): 1-9. DOI: 10.16285/j.rsm.2019.0647.
doi: 10.16285/j.rsm.2019.0647
Wheatcraft SW, Tyler SW, 1988. An explanation of scale-dependent dispersity in heterogeneous aquifers using concepts of fractal geometry. Water Resource Research, 24: 566-578. DOI: 10.1029/WR024i004p00566.
doi: 10.1029/WR024i004p00566
Yang L, Pabalan RT, Browning L, 2002. Experimental determination of the deliquescence relative humidity and conductivity of multicomponent salt mixtures. MRS Proceedings, 713JJ114. DOI: 10.1557/proc-713-jj11.4.
doi: 10.1557/proc-713-jj11.4
Zeidouni M, Pooladi-Darvish M, Keith D, 2009. Analytical solution to evaluate salt precipitation during CO2 injection in saline aquifers. International Journal of Greenhouse Gas Control, 3: 600-611. DOI: 10.1016/j.egypro.2009.01.232.
doi: 10.1016/j.egypro.2009.01.232
Zhang C, Li L, Lockington D, 2014. Numerical study of evaporation-induced salt accumulation and precipitation in bare saline soils: Mechanism and feedback. Water Resources Research, 50: 8084-8106. DOI: 10.1002/2013WR015127.
doi: 10.1002/2013WR015127
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!