Sciences in Cold and Arid Regions ›› 2018, Vol. 10 ›› Issue (3): 219-231.doi: 10.3724/SP.J.1226.2018.00219

• Articles • Previous Articles    

Spatial variations of Pb, As, and Cu in surface snow along the transect from the Zhongshan Station to Dome A, East Antarctica

XingXing Jiang1, ShuGui Hou1, YuanSheng Li2, HongXi Pang1, Rong Hua1, Mayewski Paul3,4, Sneed Sharon3, ChunLei An1,2, Handley Michael3, Ke Liu1, WangBin Zhang1   

  1. 1. Key Laboratory for Coast and Island Development, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, Jiangsu 210023, China;
    2. Polar Research Institute of China, Shanghai 200136, China;
    3. Climate Change Institute, University of Maine, Orono, Maine 04469, USA;
    4. School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, USA
  • Received:2018-01-18 Revised:2018-04-23 Published:2018-11-22
  • Contact: ShuGui Hou,shugui@nju.edu.cn E-mail:shugui@nju.edu.cn
  • Supported by:
    The authors would like to thank the Chinese 26th Antarctic Expedition. In addition, special thanks are given to Mr. JinHai Yu and Mr. Xiang Zou for their useful comments and suggestions. This work was supported by the National Natural Science Foundation of China (41330526).

Abstract: The spatial distributions of lead, arsenic, and copper (Pb, As, and Cu, respectively) in surface snow along the transect from the Zhongshan Station to Dome A, East Antarctica, are presented. The mean concentrations of Pb, As, and Cu are 1.04±1.56 pg/g, 0.39±0.08 pg/g, and 11.2±14.4 pg/g, respectively. It is estimated that anthropogenic contributions are dominant for Pb, As, and Cu. Spatially, Pb concentrations show an exponentially decreasing trend from the coast inland, while a moderate decreasing trend is observed for Cu concentrations in the coastal area (below 2,000 m above sea level (a.s.l.)). In the intermediate area (2,000-3,000 m a.s.l.), the concentrations and enrichment factors of all these elements show high variability due to the complicated characteristics of climate and environment. On the inland plateau (above 3,000 m a.s.l.), the high concentrations of As and Pb are induced by high deposition efficiency, the existence of polar stratospheric precipitation, and the different fraction deposition to East Antarctica. The extremely high concentrations with maximum values of 9.59 pg/g and 69.9 pg/g for Pb and Cu, respectively, are suggested to result mainly from local human activities at the station. Our results suggest that source, transport pathway, and deposition pattern, rather than distance from the coast or altitude, lead to the spatial distributions of Pb, As, and Cu; and it is further confirmed by spatial variations of the three metals deposited over the whole continent of Antarctica.

Key words: Antarctica, surface snow, trace metals, spatial variations, source and transportation

Albani S, Mahowald NM, Delmonte B, et al., 2012. Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the last glacial maximum and current climates. Climate Dynamics, 38(9–10):1731-1755, DOI:10.1007/s00382-011-1139-5.
Bargagli R, 2008. Environmental contamination in Antarctic ecosystems. Science of the Total Environment, 400(1–3):212-226, DOI:10.1016/j.scitotenv.2008.06.062.
Bertler N, Mayewski PA, Aristarain A, et al., 2005. Snow chemistry across Antarctica. Annals of Glaciology, 41:167-179, DOI:10.3189/172756405781813320.
Boutron CF, Patterson CC, 1986. Lead concentration changes in Antarctic ice during the Wisconsin/Holocene transition. Nature, 323(6085):222-225, DOI:10.1038/323222a0.
Boutron CF, Patterson CC, 1987. Relative levels of natural and anthropogenic lead in recent Antarctic snow. Journal of Geophysical Research:Atmospheres, 92(D7):8454-8464, DOI:10.1029/jd092id07p08454.
Burn-Nunes LJ, Vallelonga P, Loss RD, et al., 2011. Seasonal variability in the input of lead, barium and indium to Law Dome, Antarctica. Geochimica et Cosmochimica Acta, 75(1):1-20, DOI:10.1016/j.gca.2010.09.037.
Caldentey R, Mondschein S, 2003. Policy model for pollution control in the copper industry, including a model for the sulfuric acid market. Operations Research, 51(1):1-16, DOI:10.1287/opre.51.1.1.12797.
Chang C, Han C, Han Y, et al., 2016. Persistent Pb pollution in central East Antarctic snow:a retrospective assessment of sources and control policy implications. Environmental Science & Technology, 50(22):12138-12145, DOI:10.1021/acs.est.6b03209.
Chen WQ, Graedel TE, 2012. Anthropogenic cycles of the elements:a critical review. Environmental Science & Technology, 46(16):8574-8586, DOI:10.1021/es3010333.
Ding MH, Xiao CD, Li YS, et al., 2011. Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica. Journal of Glaciology, 57(204):658-666, DOI:10.3189/002214311797409820.
Dixon DA, Mayewski PA, Korotkikh E, et al., 2013. Variations in snow and firn chemistry along US ITASE traverses and the effect of surface glazing. The Cryosphere, 7(2):515-535, DOI:10.5194/tc-7-515-2013.
Duce RA, Hoffman GL, Zoller WH, 1975. Atmospheric trace metals at remote northern and southern hemisphere sites:pollution or natural?. Science, 187(4171):59-61, DOI:10.1126/science.187.4171.59.
Fischer H, Siggaard Andersen ML, Ruth U, et al., 2007. Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores:Sources, transport, and deposition. Reviews of Geophysics, 45(1):RG1002, DOI:10.1029/2005rg000192.
Grotti M, Soggia F, Ardini F, et al., 2011. Major and trace element partitioning between dissolved and particulate phases in Antarctic surface snow. Journal of Environmental Monitoring, 13(9):2511-2520, DOI:10.1039/c1em10215j.
Grotti M, Soggia F, Ardini F, et al., 2015. Year-round record of dissolved and particulate metals in surface snow at Dome Concordia (East Antarctica). Chemosphere, 138:916-923, DOI:10.1016/j.chemosphere.2014.10.094.
Hinkley TK, Lamothe PJ, Wilson SA, et al., 1999. Metal emissions from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes. Earth & Planetary Science Letters, 170(3):315-325, DOI:10.1016/s0012-821x(99)00103-x.
Hong S, Lluberas A, Rodriguez F, 2000. A clean protocol for determining ultralow heavy metal concentrations:its application to the analysis of Pb, Cd, Cu, Zn and Mn in Antarctic snow. Korean Journal of Polar Research, 11(1):35-47.
Hong S, Soyol-Erdene TO, Hwang HJ, et al., 2012. Evidence of global-scale As, Mo, Sb, and Tl atmospheric pollution in the Antarctic Snow. Environmental Science & Technology, 46(21):11550-11557, DOI:10.1021/es303086c.
Hou SG, Li YS, Xiao CD, et al., 2007. Recent accumulation rate at Dome A, Antarctica. Chinese Science Bulletin, 52(3):428-431, DOI:10.1007/s11434-007-0041-3.
Hua R, Hou SG, Li YS, et al., 2016. Arsenic record from a 3 m snow pit at Dome Argus, Antarctica. Antarctic Science, 28(4):305-312, DOI:10.1017/s0954102016000092.
Huang ZQ, Ji WD, Yang XL, et al., 2003. The chemical composition of aerosol over Zhongshan Station in Antarctica and its sources discrimination. Journal of Oceanography in Taiwan Strait, 22(3):334-346, DOI:10.3969/j.issn.1000-8160.2003.03.011.
Hur SD, Xiao C, Hong S, et al., 2007. Seasonal patterns of heavy metal deposition to the snow on Lambert Glacier Basin, East Antarctica. Atmospheric Environment, 41(38):8567-8578, DOI:10.1016/j.atmosenv.2007.07.012.
Ikegawa M, Kimura M, Honda K, et al., 1997. Springtime peaks of trace metals in Antarctic snow. Environmental Health Perspectives, 105(6):654-659, DOI:10.2307/3433612.
Ikegawa M, Kimura M, Honda K, et al., 1999. Geographical variations of major and trace elements in East Antarctica. Atmospheric Environment, 33(9):1457-1467, DOI:10.1016/s1352-2310(98)00243-x.
Järup L, 2003. Hazards of heavy metal contamination. British Medical Bulletin, 68(1):167-182, DOI:10.1093/bmb/ldg032.
Koffman BG, Handley MJ, Osterberg EC, et al., 2014. Dependence of ice-core relative trace-element concentration on acidification. Journal of Glaciology, 60(219):103-112, DOI:10.3189/2014JoG13J137.
Krinner G, Petit JR, Delmonte B, 2010. Altitude of atmospheric tracer transport towards Antarctica inpresent and glacial climate. Quaternary Science Reviews, 29(1–2):274-284, DOI:10.1016/j.quascirev.2009.06.020.
Lee K, Do Hur S, Hou SG, et al., 2008. Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Science of the Total Environment, 404(1):171-181, DOI:10.1016/j.scitotenv.2008.06.022.
Li FY, Ginoux P, Ramaswamy V, 2008. Distribution, transport, and deposition of mineral dust in the southern ocean and Antarctica:contribution of major sources. Journal of Geophysical Research:Atmospheres, 113(D10):D10207, DOI:10.1029/2007jd009190.
Lide DR, 2005. Abundance of Elements in the Earth's crust and in the sea. In:CRC Handbook of Chemistry and Physics. Boca Raton:CRC Press, pp. 14-17.
Liu YP, Hou SG, Hong SM, et al., 2011. High-resolution trace element records of an ice core from the eastern Tien Shan, central Asia, since 1953 AD. Journal of Geophysical Research:Atmospheres, 116(D12):D12307, DOI:10.1029/2010jd015191.
Mahalinganathan K, Thamban M, Laluraj CM, et al., 2012. Relation between surface topography and sea-salt snow chemistry from Princess Elizabeth Land, East Antarctica. The Cryosphere, 6(2):505-515, DOI:10.5194/tcd-5-2967-2011.
Ma YF, Bian LE, Xiao CD, et al., 2010. Near surface climate of the traverse route from Zhongshan Station to Dome A, East Antarctica. Antarctic Science, 22(4):443-459, DOI:10.1017/s0954102010000209.
McConnell JR, Maselli OJ, Sigl M, et al., 2014. Antarctic-wide array of high-resolution ice core records reveals pervasive lead pollution began in 1889 and persists today. Scientific Reports, 4:5848, DOI:10.1038/srep05848.
Merian E, Anke M, Ihnat M, et al., 2004. Elements and their compounds in the environment:occurrence, analysis and biological relevance. Weinheim:Wiley. DOI:10.1002/9783527619634.
Murozumi M, Chow TJ, Patterson C, 1969. Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochimica et Cosmochimica Acta, 33(10):1247-1294, DOI:10.1016/0016-7037(69)90045-3.
Nho EY, Le Cloarec MF, Ardouin B, et al., 1996. Source strength assessment of volcanic trace elements emitted from the Indonesian arc. Journal of Volcanology and Geothermal Research, 74(1–2):121-129, DOI:10.1016/S0377-0273(96)00051-0.
Nriagu JO, Davidson CI, 1986. Toxic Metals in the Atmosphere. New York:John Wiley and Sons, pp. 635.
Nriagu JO, Pacyna JM, 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333(6169):134-139, DOI:10.1038/333134a0.
Nriagu JO, 1989. A global assessment of natural sources of atmospheric trace metals. Nature, 338(6210):47-49, DOI:10.1038/338047a0.
Osterberg EC, Handley MJ, Sneed SB, et al., 2006. Continuous ice core melter system with discrete sampling for major ion, trace element, and stable isotope analyses. Environmental Science & Technology, 40(10):3355-3361, DOI:10.1021/es052536w.
Pacyna JM, Pacyna EG, 2001. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews, 9(4):269-298, DOI:10.1139/er-9-4-269.
Patterson CC, Settle DM, 1987. Magnitude of lead flux to the atmosphere from volcanoes. Geochimica et Cosmochimica Acta, 51(3):675-681, DOI:10.1016/0016-7037(87)90078-0.
Planchon FAM, Boutron CF, Barbante C, et al., 2002a. Changes in heavy metals in Antarctic snow from Coats Land since the mid-19th to the late-20th century. Earth and Planetary Science Letters, 200(1–2):207-222, DOI:10.1016/s0012-821x(02)00612-x.
Planchon FAM, Boutron CF, Barbante C, et al., 2002b. Short-term variations in the occurrence of heavy metals in Antarctic snow from Coats Land since the 1920s. Science of the Total Environment, 300(1–3):129-142, DOI:10.1016/s0048-9697(02)00277-2.
Potocki M, Mayewski PA, Kurbatov AV, et al., 2016. Recent increase in Antarctic Peninsula ice core uranium concentrations. Atmospheric Environment, 140:381-385, DOI:10.1016/j.atmosenv.2016.06.010.
Ren JW, Qin DH, Xiao CD, 2001. Preliminary results of the inland expeditions along a transect from the Zhongshan Station to Dome A, East Antarctica. Journal of Glaciology and Geocryology, 23(1):51-56.
Santachiara G, Belosi F, Prodi F, 2016. Ice crystal precipitation at Dome C site (East Antarctica). Atmospheric Research, 167:108-117, DOI:10.1016/j.atmosres.2015.08.006.
Schwanck F, Simões JC, Handley M, et al., 2016. Anomalously high arsenic concentration in a west Antarctic ice core and its relationship to copper mining in Chile. Atmospheric Environment, 125:257-264, DOI:10.1016/j.atmosenv.2015.11.027.
Stohl A, Sodemann H, 2010. Characteristics of atmospheric transport into the Antarctic troposphere. Journal of Geophysical Research:Atmospheres, 115(D2):D02305, DOI:10.1029/2009jd012536.
Suttie ED, Wolff EW, 1993. The local deposition of heavy metal emissions from point sources in Antarctica. Atmospheric Environment. Part A. General Topics, 27(12):1833-1841, DOI:10.1016/0960-1686(93)90288-a.
Thamban M, Thakur RC, 2013. Trace metal concentrations of surface snow from Ingrid Christensen coast, East Antarctica-spatial variability and possible anthropogenic contributions. Environmental Monitoring and Assessment, 185(4):2961-2975, DOI:10.1007/s10661-012-2764-0.
Vallelonga P, Van de Velde K, Candelone JP, et al., 2002. The lead pollution history of Law Dome, Antarctica, from isotopic measurements on ice cores:1500 AD to 1989 AD. Earth and Planetary Science Letters, 204(1–2):291-306, DOI:10.1016/s0012-821x(02)00983-4.
Vallelonga P, Barbante C, Cozzi G, et al., 2004. Elemental indicators of natural and anthropogenic aerosol inputs to Law Dome, Antarctica. Annals of Glaciology, 39:169-174, DOI:10.3189/172756404781814483.
Van de Velde K, Vallelonga P, Candelone JP, et al., 2005. Pb isotope record over one century in snow from Victoria Land, Antarctica. Earth and Planetary Science Letters, 232(1–2):95-108, DOI:10.1016/j.epsl.2005.01.007.
Wang JJ, Chen LQ, Yang XL, et al., 2010. Characteristics of metals in the aerosols of Zhongshan station, Antarctica. Advances in Polar Science, 21(1):46-59, DOI:10.3724/SP.J.1085.2010.00046.
Wedepohl KH, 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7):1217-1232, DOI:10.1016/0016-7037(95)00038-2.
Wolff EW, Suttie ED, 1994. Antarctic snow record of southern hemisphere lead pollution. Geophysical Research Letters, 21(9):781-784, DOI:10.1029/94gl00656.
Wolff EW, Hall JS, Mulvaney R, et al., 1998. Relationship between chemistry of air, fresh snow and firn cores for aerosol species in coastal Antarctica. Journal of Geophysical Research:Atmospheres, 103(D9):11057-11070, DOI:10.1029/97jd02613.
Wolff EW, Suttie ED, Peel DA, 1999. Antarctic snow record of cadmium, copper, and zinc content during the twentieth century. Atmospheric Environment, 33(10):1535-1541, DOI:10.1016/s1352-2310(98)00276-3.
[1] AiHong Xie,ShiMeng Wang,YiCheng Wang,ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369-378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!