Sciences in Cold and Arid Regions ›› 2022, Vol. 14 ›› Issue (3): 196-211.doi: 10.3724/SP.J.1226.2022.2021-0013.
TianJie Shao1,4(),ZhiPing Xu1,LianKai Zhang2(),RuoJin Wang1,JunJie Niu3,MingYu Shao2
Abdalla K, Mutema M, Chivenge P, et al., 2018. Grassland degradation significantly enhances soil CO2 emission. Catena, 167: 284-292. DOI: 10.1016/j.catena.2018.05.010 .
doi: 10.1016/j.catena.2018.05.010 |
|
Arslan WSK, Waqar ZS, 2020. An empirical investigation between CO2 emission, energy consumption, trade liberalization and economic growth: A case of Kuwait. Journal of Building Engineering, 28: 101104. DOI: 10.1016/j.jobe. 2019.101104 .
doi: 10.1016/j.jobe. 2019.101104 |
|
Assefa D, Rewald B, Sandén H, et al., 2017. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in northwest Ethiopia. Catena, 153: 89-99. DOI: 10. 1016/j.catena.2017.02.003 .
doi: 10. 1016/j.catena.2017.02.003 |
|
Bezaye T, Rolf S, Kristin P, 2020. Potential for soil organic carbon sequestration in grasslands in east african countries: A review. Grassland Science, 66(3):135-144. DOI: 10.1111/grs.12267 .
doi: 10.1111/grs.12267 |
|
Bini G, Chiodini G, Cardellini C, et al., 2019. Diffuse emission of CO2 and convective heat release at nisyros caldera (Greece). Journal of Volcanology and Geothermal Research, 376: 44-53. DOI: 10.1016/j.jvolgeores.2019.03.017 .
doi: 10.1016/j.jvolgeores.2019.03.017 |
|
Bloemendal J, Liu X, Sun Y, et al., 2008. An assessment of magnetic and geochemical indicators of weathering and pedogenesis at two contrasting sites on the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecololgy, 257(1-2): 152-168. DOI: 10.1016/j.palaeo.2007.09.017 .
doi: 10.1016/j.palaeo.2007.09.017 |
|
Chen Z, Li Y, Martinelli G, et al., 2020. Spatial and temporal variations of CO2 emissions from the active fault zones in the capital area of China. Applied Geochemistry, 112: 1-10. DOI: org/10.1016/j.apgeochem.2019.104489 .
doi: org/10.1016/j.apgeochem.2019.104489 |
|
Choi Y, Kim D, Cho S, et al., 2019. Southeastern yellow sea as a sink for atmospheric carbon dioxide. Marine Pollution Bulletin, 149: 110550. DOI: 10.1016/j.marpolbul.2019.110550 .
doi: 10.1016/j.marpolbul.2019.110550 |
|
Courtois EA, Stahl C, Burban B, et al., 2018. Automatic high-frequency measurements of full soil greenhouse gas fluxes in a tropical forest. Biogeosciences, 16(3): 785-796. DOI: 10.5194/bg-16-785-2019 .
doi: 10.5194/bg-16-785-2019 |
|
Cui Y, Schubert BA, Jahren AH, 2020. A 23 m. y. record of low atmospheric CO2. Geology, 48(9): 888-892. DOI: 10.1130/G47681.1 .
doi: 10.1130/G47681.1 |
|
Deng L, Shangguan ZP, Wu GL, et al., 2017. Effects of grazing exclusion on carbon sequestration in China's grassland. Earth-Science Reviews, 173: 84-95. DOI: 10.1016/j.earscirev.2017.08.008 .
doi: 10.1016/j.earscirev.2017.08.008 |
|
Dong X, Gao X, 2014. Long-term climate change: Interpretation of IPCC fifth assessment report. Progressus inquisitiones de mutatione climatis, 10(1): 56-59. | |
Dummann W, Steinig S, Hofmann P, et al., 2020. The impact of early cretaceous gateway evolution on ocean circulation and organic carbon burial in the emerging south Atlantic and southern ocean basins. Earth Planetary Science Letters, 530: 115890. DOI: 10.1016/j.epsl.2019.115890 .
doi: 10.1016/j.epsl.2019.115890 |
|
Eickenscheidt N, Brumme R, 2013. Regulation of N2O and NOx emission patterns in six acid temperate beech forest soils by soil gas diffusivity, N turnover, and atmospheric NOx concentrations. Plant Soil, 369(1-2): 515-529. DOI: 10.1007/s11104-013-1602-7 .
doi: 10.1007/s11104-013-1602-7 |
|
Erik OJ, Paal S, 2020. Summarizing an eulerian-lagrangian model for subsea gas release and comparing release of CO2 with CH4 . Applied Mathematatical Modelling, 79: 672-684. DOI: 10.1016/j.apm.2019.10.057 .
doi: 10.1016/j.apm.2019.10.057 |
|
Fu B, Wang S, Liu Y, et al., 2017. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annual Review of Earth & Planetary Sciences, 45(1): 223-243. DOI: 10.1146/annurev-earth-063016-020552 .
doi: 10.1146/annurev-earth-063016-020552 |
|
Huang Y, Li Q, 2019. Karst biogeochemistry in China: Past, present and future. Environmental Earth Sciences, 78(15): 450. DOI: 10.1007/s12665-019-8400-3 .
doi: 10.1007/s12665-019-8400-3 |
|
IPCC, 2013. Climate Change Fifth Assessment Report: The Physical Science Basis. Cambridge, United Kingdom and New York, NY, USA. pp. 1535. | |
Jevon FV, D'Amato AW, Woodall CW, et al., 2019. Tree basal area and conifer abundance predict soil carbon stocks and concentrations in an actively managed forest of northern New Hampshire, USA. Forest and Ecology Management, 451: 117534. DOI: 10.1016/j.foreco.2019.117534 .
doi: 10.1016/j.foreco.2019.117534 |
|
Jian J, Steele MK, Thomas Q, et al., 2018. Constraining estimates of global soil respiration by quantifying sources of variability. Global Change Biololgy, 24: 4143-4159. DOI: 10.1111/gcb.14301 .
doi: 10.1111/gcb.14301 |
|
Jiang Q, Qi Z, Xue L, et al., 2020. Assessing climate change impacts on greenhouse gas emissions, n losses in drainage and crop production in a subsurface drained field. Science of the Total Environment, 705: 135969. DOI: 10.1016/j.scitotenv.2019.135969 .
doi: 10.1016/j.scitotenv.2019.135969 |
|
Johnson G, Hicks N, Bond CE, et al., 2017. Detection and understanding of natural CO2 releases in kwazulu-natal, South africa. Energy Procedia, 114: 3757-3763. DOI: 10.1016/j.egypro.2017.03.1505 .
doi: 10.1016/j.egypro.2017.03.1505 |
|
Joo SJ, Park SU, Park MS, et al., 2012. Estimation of soil respiration using automated chamber systems in an oak (quercus mongolica) forest at the nam-san site in seoul, Korea. Science of the Total Environment, 416: 400-409. DOI: 10.1016/j.scitotenv.2011.11.025 .
doi: 10.1016/j.scitotenv.2011.11.025 |
|
Larsen D, Bursi J, Waldron B, et al., 2020. Recharge pathways and rates for a sand aquifer beneath a loess-mantled landscape in western Tennessee, U.S.A. Journal of Hydrology: Regional Studies, 28: 100667. DOI: 10.1016/j.ejrh. 2020.100667 .
doi: 10.1016/j.ejrh. 2020.100667 |
|
Li Y, Zhao J, 2006. Soil CO2 concentration under different artificial vegetations in south suburb of Xi'an. Journal of Desert Research, 26(6): 910-915. (in Chinese) | |
Liang FY, Song LH, Wang J, 2003. Diurnal variation of soil CO2 concentration and its relationship with soil CO2 flux. Progress in Geography, 22: 170-175. (in Chinese) | |
Liu Z, Dreybrodt W, Wang H, 2008. A possible important CO2 sink by the global water cycle. Science Bulletin, 53(3): 402-407. DOI: 10.1007/s11434-008-0096-9 .
doi: 10.1007/s11434-008-0096-9 |
|
Liu Z, Zhao J, 2000. Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environment Geology, 39(9): 1053-1058. DOI: 10.1007/s002549900072 .
doi: 10.1007/s002549900072 |
|
McLaren AD, Anderson GH, Hopkins PD, 1984. Soil Biochemistry (Chinese edition). Beijing: Agriculture Press, pp. 490-492. | |
Monteiro T, Kerr R, Orselli IBM, et al., 2020. Towards an intensified summer CO2 sink behavior in the southern ocean coastal regions. Progress in Oceanography, 183: 102267. DOI: 10.1016/j.pocean.2020.102267 .
doi: 10.1016/j.pocean.2020.102267 |
|
Munir Q, Lean HH, Smyth R, 2020. CO2 emissions, energy consumption and economic growth in the Asean-5 countries: A cross-sectional dependence approach. Energy Economics, 85: 104571. DOI: 10.1016/j.eneco.2019.104571 .
doi: 10.1016/j.eneco.2019.104571 |
|
Nelson DW, Sommers LE, Sparks DL, et al., 1996. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis, 9: 961-1010. DOI: https://doi.org/10.2136/sssabookser5.3.c34 .
doi: 10.2136/sssabookser5.3.c34 |
|
Ni Y, Sun Z, Yi X, 2013. Influence of soluble carbon on N2O and CO2 emissions from soil of typical farm-land in north China. Journal of Soil and Water Conservation, 27(4): 222-227. (in Chinese) | |
Otieno DO, K'Otuto GO, Jákli B, et al., 2010. Spatial heterogeneity in ecosystem structure and productivity in a moist Kenyan savanna. Plant Ecology, 212(5): 769-783. DOI: 10. 1007/s11258-010-9863-1 .
doi: 10. 1007/s11258-010-9863-1 |
|
Pacala SW, Hurtt GC, Baker D, et al., 2001. Consistent land- and atmosphere-based U.S. Carbon sink estimates. Science, 292(5525): 2316-2320. DOI: 10.1126/science.1057320 .
doi: 10.1126/science.1057320 |
|
Peng J, Wang S, Wang Q, et al., 2019. Distribution and genetic types of loess landslides in China. Journal of Asian Earth Sciences, 170: 329-350. DOI: 10.1016/j.jseaes.2018.11.015 .
doi: 10.1016/j.jseaes.2018.11.015 |
|
Phillips RL, Zak DR, Holmes WE, et al., 2002. Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia, 131(2): 236-244. DOI: 10.1007/s00442-002-0868-x .
doi: 10.1007/s00442-002-0868-x |
|
Shao T, Ma Y, Zhao J, et al., 2016. Vertical distribution of sand layer CO2 concentration and its diurnal variation rules in alxa desert region, northwest China. Environmental Earth Sciences, 75(18): 1269. DOI: 10.1007/s12665-016-6083-6 .
doi: 10.1007/s12665-016-6083-6 |
|
Shen J, Zhang F, Mao D, 2001. Carbon cycling in rhizosphere micro-ecological system. Plant Natrition and Fertilizen Science, 7(2): 232-240. (in Chinese) | |
Shen X, Su M, Sun T, et al., 2020. Net heterotrophy and low carbon dioxide emissions from biological processes in the yellow river estuary, China. Water Research, 171: 115457. DOI: 10.1016/j.watres.2019.115457 .
doi: 10.1016/j.watres.2019.115457 |
|
Song S, Wang ZA, Gonneea ME, et al., 2020. An important biogeochemical link between organic and inorganic carbon cycling: Effects of organic alkalinity on carbonate chemistry in coastal waters influenced by intertidal salt marshes. Geochimica ET Cosmochimica Acta, 275: 123-139. DOI: 10.1016/j.gca.2020.02.013 .
doi: 10.1016/j.gca.2020.02.013 |
|
Tao L, Zhao D, Zhang M, et al., 2013. Dynamic characteristics of the soil CO2 and soil water chemistry, and their driving action on karstification. Tropical Geography, 33(5): 575-581. (in Chinese) | |
Tiessen H, Cuevas E, Chacon P, 1993. The role of soil organic matter in sustaining soil fertility. Nature, 371: 783-785. | |
Usman, Iskandar UP, Sugihardjo, et al., 2014. A systematic approach to source-sink matching for CO2 eor and sequestration in south Sumatera. Energy Procedia, 63: 7750-7760. DOI: 10.1016/j.egypro.2014.11.809 .
doi: 10.1016/j.egypro.2014.11.809 |
|
Villarino SH, Studdert GA, Baldassini P, et al., 2016. Deforestation impacts on soil organic carbon stocks in the semiarid chaco region, Argentina. Science of the Total Environment, 575: 1056-1065. DOI: 10.1016/j.scitotenv.2016.09.175 .
doi: 10.1016/j.scitotenv.2016.09.175 |
|
Wagle P, Gowda PH, Neel JPS, et al., 2020. Integrating eddy fluxes and remote sensing products in a rotational grazing native tallgrass prairie pasture. Science of the Total Environment, 712: 136407. DOI: 10.1016/j.scitotenv. 2019.136407 .
doi: 10.1016/j.scitotenv. 2019.136407 |
|
Wang H, Wang S, Yu Q, et al., 2020. No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. Journal of Environment Management, 261: 110261. DOI: 10.1016/j.jenvman.2020.110261 .
doi: 10.1016/j.jenvman.2020.110261 |
|
Wang Z, He Y, Niu B, et al., 2020. Sensitivity of terrestrial carbon cycle to changes in precipitation regimes. Ecological Indicators, 113: 106223. DOI: 10.1016/j.ecolind.2020.106223 .
doi: 10.1016/j.ecolind.2020.106223 |
|
Wei W, Chen L, Fu B, et al., 2007. The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. Journal of Hydrology, 335(3-4): 247-258. DOI: 10.1016/j.jhydrol.2006.11.016 .
doi: 10.1016/j.jhydrol.2006.11.016 |
|
Wei Z, Wang JJ, Dodla SK, et al., 2020. Exploring anaerobic CO2 production response to elevated nitrate levels in gulf of Mexico coastal wetlands: Phenomena and relationships. Science of the Total Environment, 709: 136158. DOI: 10.1016/j.scitotenv.2019.136158 .
doi: 10.1016/j.scitotenv.2019.136158 |
|
Williams MA, Rice C, Owensby CE, 2000. Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant and Soil, 227(1-2): 127-137. DOI: 10.1023/A:1026590001307 .
doi: 10.1023/A:1026590001307 |
|
Wu CS, Sheen JD, Chen SY, et al., 2001. Feasibility of CO2 fixation via artificial rock weathering. Industrial & Engineering Chemistry Research, 40(18): 3902-3905. DOI: 10. 1021/ie010222l .
doi: 10. 1021/ie010222l |
|
Yang ZL, Wei YY, Fu GY, et al., 2020. Asymmetric effect of increased and decreased precipitation in different periods on soil and heterotrophic respiration in a semiarid grassland. Agricultural and Forest Meteorology, 291: 108039. DOI: 10.1016/j.agrformet.2020.108039 .
doi: 10.1016/j.agrformet.2020.108039 |
|
Yao P, Li X, Liu J, et al., 2018. The role of maize plants in regulating soil profile dynamics and surface emissions of nitrous oxide in a semiarid environment. Biology Fertility of Soils, 54(1): 119-135. 10.1007/s00374-017-1243-8 .
doi: 10.1007/s00374-017-1243-8 |
|
Yao, Yu K, Wang G, et al., 2019. Effects of soil erosion and reforestation on soil respiration, organic carbon and nitrogen stocks in an eroded area of southern China. Science of the Total Environment, 683: 98-108. DOI: 10.1016/j.scitotenv.2019.05.221 .
doi: 10.1016/j.scitotenv.2019.05.221 |
|
Yuan D, Zhang C, 2008. Karst dynamics theory in China and its practice. Acta Geoscientica Sinica, 29(3): 355-365. (in Chinese) | |
Yun J, Jeong S, Ho C, 2020. Enhanced regional terrestrial carbon uptake over Korea revealed by atmospheric CO2 measurements from 1999 to 2017. Global Change Biology, 26(6): 3368-3383. DOI: 10.1111/gcb.15061 .
doi: 10.1111/gcb.15061 |
|
Yusup Y, Alkarkhi AFM, Kayode JS, et al., 2018. Statistical modeling the effects of microclimate variables on carbon dioxide flux at the tropical coastal ocean in the southern south China sea. Dynamics of Atmospheres and Oceans, 84: 10-21. DOI: 10.1016/j.dynatmoce.2018.08.002 .
doi: 10.1016/j.dynatmoce.2018.08.002 |
|
Zang H, Li Y, Xue L, et al., 2018. The contribution of low temperature and biological activities to the CO2 sink in Jiaozhou bay during winter. Journal of Marine Systems, 186: 37-46. DOI: 10.1016/j.jmarsys.2018.05.008 .
doi: 10.1016/j.jmarsys.2018.05.008 |
|
Zhang C, Zhao J, Yang X, 2008. Research on soil carbon dioxide density in different depths of the grassland. Journal of Shaanxi Normal University (Natural Science Edition), 36(6): 90-96. (in Chinese) | |
Zhang H, Deng Q, Hui D, et al., 2019. Recovery in soil carbon stock but reduction in carbon stabilization after 56-year forest restoration in degraded tropical lands. Forest Ecology and Management, 441: 1-8. DOI: 10.1016/j.foreco.2019.03.037 .
doi: 10.1016/j.foreco.2019.03.037 |
|
Zhao J, Yuan D, Xi L, 2000. Research on the modern karst processes and absorbed amount of CO2 in bahe river catchment of Xi'an. Quaternary Sciences, 20(4): 367-373. (in Chinese) |
No related articles found! |
|