Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (5): 430-439.doi: 10.3724/SP.J.1226.2021.21038.

Previous Articles    

Impact of brine on physical properties of saline soils

Yu Zhang1(),Jie Liu1,AnHua Xu2,JianKun Liu3,ZhaoHui Yang4,JianHong Fang5   

  1. 1.School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
    2.Qinghai Communications Technical College, Xining, Qinghai 810003, China
    3.School of Civil Engineering, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
    4.College of Engineering, University of Alaska Anchorage, Anchorage 99508, USA
    5.Qinghai Research Institute of Transportation, Xining, Qinghai 810001, China
  • Received:2021-05-18 Accepted:2021-08-24 Online:2021-10-31 Published:2021-12-03
  • Contact: Yu Zhang E-mail:zhangyu@mail.lzjtu.cn
  • Supported by:
    the National Natural Science Foundation of China(41501062);the Longyuan Youth Innovation and Entrepreneurship Talent (Team) Project of Gansu Province and Natural Science Foundation of Gansu Province(20JR10RA227)

Abstract:

Engineering activities in the salt lake region continue to increase where fresh water resources are scarce. This paper investigates the physical properties of saline soils during mixing with brine. Fine-grained saline soils with salt content varying from 2.6% to 78.5% were collected along Qarhan-Golmud Highway (QGH) and Sebei-Qarhan Highway (SQH) on the Qinghai-Tibet Plateau to conduct laboratory physical properties tests. Liquid plastic limit tests were conducted. Results show that liquid plastic limit parameters will decrease with an increase of salt content ranging from 2.6% to 78.5%, and the relationship between them is linear. After considering the content ratio of chloride and sulfate, results show that liquid plastic limit parameters will decrease with an increase of the ratio of chloride to sulfate ranging from 0.7% to 7.0%; liquid plastic limit parameters enter a stable period at the ratio of chloride to sulfate ranging from 7.0% to 37.4%; liquid plastic limit parameters enter a decline period at the ratio of chloride to sulfate ranging from 37.4% to 77.2%. After brine and fresh water are separately mixed into saline soil, the optimal moisture content of the soil samples after the brine action is lower than the saline soil under the action of fresh water, and the maximum dry density of the soil sample is higher than that under the action of fresh water. At the same time, these changing laws show a certain correlation with the chloride ion content and the ratio of chloride to sulfate in saline soils. The results are of significance for engineering activities in salt lake regions with extensive saline soil distribution.

Key words: saline soil, brine, physical properties, the ratio of chloride to sulfate

Figure 1

Salt crystals"

Table 1

Brine analysis results"

Ion speciesContentIon speciesContent
CO32-0.046%Mg2+1.459%
HCO3-0.033%SO42-1.114%
Cl-19.254%Na+7.136%
Ca2+0.762%Total salt content30.968%
K+1.211%

Figure 2

Monthly average temperature and ground temperature from 2010 to 2020"

Figure 3

Monthly average rainfall and evaporation from 2010 to 2020"

Table 2

Salt content of saline soil samples"

Soil samplesSampling location and mileageSalt content

Total salt

content

Cl-/SO42-
CO32-HCO3-Cl-SO42-K+Na+Ca2+Mg2+
MLSt-1QGH-K642 + 2000.00%0.16%0.43%0.58%0.02%0.35%0.30%0.24%2.59%0.740
MLSt-2QGH-K636 + 0000.00%0.02%2.04%1.10%0.06%1.32%0.95%0.10%8.80%1.849
MLSt-3QGH-K636 + 0000.00%0.01%3.37%1.49%0.08%1.62%0.70%0.24%11.88%2.267
CLSt-1QGH-K602 + 7500.00%0.03%14.73%0.48%0.13%6.73%0.60%1.34%25.40%30.69
SPSt-1SQH-K113 + 8320.01%0.05%17.95%0.32%0.06%11.16%0.22%0.20%29.97%56.09
CLSt-2QGH-K603 + 3000.00%0.01%3.37%2.40%0.14%10.35%0.80%0.79%35.06%7.025
CLSt-3QGH-K603 + 2600.03%0.13%17.93%0.48%0.12%9.69%0.60%0.98%36.12%37.35
SFSt-1SQH-K151+187.60.03%0.03%37.75%0.75%1.88%18.28%0.35%2.70%61.77%50.33
SFSt-2SQH-K153 + 997.60.05%0.05%38.95%1.13%3.54%16.83%0.48%3.38%64.41%34.45
SPSt-2SQH-K102 + 8000.02%0.03%47.06%0.61%0.16%30.25%0.28%0.10%78.50%77.15

Figure 4

Soil sample test"

Table 3

Liquid plastic limit measurement results"

Soil

samples

Liquid limitPlastic limitPlasticity index

Nonuniform

coefficient

MLSt-142.1%27.3%14.814.7
MLSt-239.5%25.6%13.912.5
MLSt-338.7%25.4%13.313.3
CLSt-128.5%18.2%10.310.7
SPSt-120.5%17.4%3.14.8
CLSt-226.8%18.0%8.87.8
CLSt-326.3%17.4%8.913.3
SFSt-111.0%4.1%6.98.0
SFSt-29.2%5.5%3.79.9
SPSt-29.2%2.6%6.65.5

Figure 5

Salt content vs. liquid limit (ωL), plastic limit (ωP), and plasticity index (IP)For the convenience of defining the parameters in the formula, the superscript and subscript of the parameters are the abscissa and ordinate names respectively."

Table 4

Parameters list"

yxaωl,ωpsalbωl,ωpsalR2
Liquid limitSalt content-0.47642.00.92
Plastic limit-0.35428.70.97
Plasticity index-0.12213.40.78

Figure 6

The content of chloride ions vs. liquid limit (ωL), plastic limit (ωP), and plasticity index (IP)"

Table 5

Parameters list"

yxaωl,ωpchlaωl,ωpchlR2
Liquid limitChloride ions-0.72439.70.96
Plastic limit-0.54026.40.96
Plasticity index-0.18413.30.90

Figure 7

The ratio of chloride to sulfate vs. liquid limit (ωL), plastic limit (ωP), and plasticity index (IP)"

Table 6

Parameters list"

yx (0.74≤x<7.03)aωl,ωpratbωl,ωpratR2
Liquid limitThe ratio of chloride to sulfate-2.36944.10.99
Plastic limit-1.53628.80.99
Plasticity index-0.84315.30.97

Table 7

Parameters list"

yx (7.03≤x<37.35)aωl,ωpratbωl,ωpratR2
Liquid limitThe ratio of chloride to sulfate-0.01827.90.87
Plastic limit-0.01218.20.97
Plasticity index-0.0069.70.97

Table 8

Parameters list"

yx (37.35≤x≤77.15)aωl,ωpratbωl,ωpratR2
Liquid limitThe ratio of chloride to sulfate-0.44243.70.89
Plastic limit-0.35833.10.77
Plasticity index-0.08410.60.68

Table 9

Optimal moisture content and maximum dry density under brine"

Soil samplesOptimal moisture contentMaximum dry density (g/cm3)
MLSt-117.90%1.66
MLSt-216.80%1.73
MLSt-316.70%1.77
CLSt-18.20%1.83
SPSt-15.20%1.84
CLSt-27.00%1.92
CLSt-37.20%1.96
SFSt-14.49%1.91
SFSt-23.20%1.95
SPSt-22.25%2.09

Table 10

Parameters list"

ConditionsyxaoptsalboptsalR2
WaterThe optimal moisture contentSalt content-16.59234.50.96
Brine-12.19025.90.87

Figure 8

Relationship between salt content and optimal moisture content of soil samplesNote: The abscissa is log base 10."

Figure 9

Relationship between the content of chloride ions and optimal moisture content of soil samples"

Figure 10

Relationship between the ratio of chloride to sulfate and optimal moisture content of soil samples"

Table 11

Parameters list"

yxaoptchlboptchlR2
The optimal moisture contentThe content of chloride ions (3.22≤x<18.83)-0.82420.90.99
The optimal moisture contentThe content of chloride ions (18.83≤x≤47.16)-0.1328.70.74

Table 12

Parameters list"

yxaoptratboptratR2
The optimal moisture contentThe ratio of chloride to sulfate-0.22016.70.81

Table 13

Optimal moisture content and maximum dry density under freshwater"

Soil samplesOptimal moisture contentMaximum dry density (g/cm3)
SPSt-23.63%2.00
SPSt-18.30%1.65
SFSt-14.57%1.84
SFSt-25.00%1.90
CLSt-117.5%1.56

Figure 11

Relationship between salt content and maximum dry density of saline soil"

Figure 12

Relationship between the content of chloride ions and maximum dry density of saline soil"

Figure 13

Relationship between the ratio of chloride to sulfate and maximum dry density of saline soil"

Table 14

Parameters list"

ConditionsyxamaxsalbmaxsalR2
WaterThe maximum dry densitySalt content (2.59≤x≤78.50)0.0071.40.97
Salt content (2.59≤x<36.10)0.0081.70.93
BrineSalt content (36.10≤x<64.41)-0.00031.90.97
Salt content (64.41≤x≤78.50)0.0111.30.99

Table 15

Parameters list"

yxamaxchlbmaxchlR2
The maximum dry densityThe content of chloride ions (3.22≤x<18.83)0.0131.70.75
The content of chloride ions (18.83≤x<39.16)0.0021.90.96
The content of chloride ions (39.16≤x≤47.16)0.0191.20.98

Table 16

Parameters list"

yxamaxratbmaxratR2
The maximum dry densityThe ratio of chloride to sulfate (4.13≤x<35.00)0.0061.70.62
The ratio of chloride to sulfate (35.00≤x<59.09)-0.0022.00.92
The ratio of chloride to sulfate (59.09≤x≤77.85)0.0131.11.00

Table 17

Parameters list"

zxyamaxconbmaxconcmaxconcendmaxconcen
The maximum dry density (g/cm3)The salt content (%)The concentration (%)4×10-50.002810-61.5298
Bao WX, Zhang SS, 2016. Experimental study on salt expansion and thawing subsidence properties of sandy saline soil. Chinese Journal of Geotechnical Engineering, 38(04): 734-739. DOI: 10.11779/CJGE201604019.
doi: 10.11779/CJGE201604019
Chen ZJ, A SS, 2019. Analysis of the influence of salt content on the stability of slope of road subgrade with saline soil. Qinghai science and technology, 26(02): 42-45. DOI: CNKI:SUN:QKKJ.0.2019-02-010.
doi: CNKI:SUN:QKKJ.0.2019-02-010
Deng B, 2020. Expansion property analysis of saline soils combined with Brine. Shandong Jiaotong Science and Technology, (05): 29-32. DOI: 10.3969/j.issn.1673-8942.2020.05.008.
doi: 10.3969/j.issn.1673-8942.2020.05.008
Ding ZY, Chen XG, 2018. Study on seasonal variation of salt in saline soil in western Jilin province. Water Conservancy Planning and Design, (09): 104-106+116. DOI: 10.3969/j.issn.1672-2469.2018.09.030.
doi: 10.3969/j.issn.1672-2469.2018.09.030
Feng RL, Cai XY, Wu LJ, et al., 2017. Theoretical model on coupling process of moisture-salt-heat-stress field in sulfate salty soil. China Journal of Highway and Transport, 30(02): 1-10+40. DOI: 10.19721/j.cnki.1001-7372.2017.02.001.
doi: 10.19721/j.cnki.1001-7372.2017.02.001
Hu HJ, Duan XL, He ZM, et al., 2018. Mechanical properties and meso mechanical performance evaluation of coarse-grained soil fillers based on dynamic triaxial CT test. China Journal of Highway and Transport, 31(11): 42-50. DOI: CNKI:SUN:ZGGL.0.2018-11-006.
doi: CNKI:SUN:ZGGL.0.2018-11-006
JTG3430-2020, 2020. Test Methods of Soils for Highway Engineering. China, P.R. Ministry of Communications. China Communications Press, Beijing.
Li M, Chai SX, Du HP, et al., 2016. Effect of chlorine salt on the physical and mechanical properties of inshore saline soil treated with lime. Soils and Foundations, 56(3): 327-335. DOI: 10.1016/j.sandf.2016.04.001.
doi: 10.1016/j.sandf.2016.04.001
Li JY, Zhang AQ, Shan W, 2017. Method for determining the compactness of low liquid limit clay subgrade based on simple penetration test. Journal of Central South University: Natural Science, 48(10): 2732-2737. DOI: 10.11817/j.issn.1672-7207.2017.10.024.
doi: 10.11817/j.issn.1672-7207.2017.10.024
Liang JW, Fang YG, Chen S, 2009. Experimental research on effect of salt content on strength of tiny-particle clay. Journal of Rock Mechanics and Engineering, 28(S2): 3821-3829. DOI: JournalArticle/5af4e43dc095d718d81ed7f2.
doi: JournalArticle/5af4e43dc095d718d81ed7f2
Liu HL, Zhao MH, 2016. Review of ground improvement technical and its application in China. Journal of Civil Engineering, 49(01): 96-115. DOI: 10.15951/j.tmgcxb.2016.01.012.
doi: 10.15951/j.tmgcxb.2016.01.012
Wang YF, Weng XZ, Zhang RY, et al., 2015. Permeating-chemical grouting treatment method of sulphate saline soil. Journal of Traffic and Transportation Engineering, 15(06): 10-16+25. DOI: 10.19818/j.cnki.1671-1637.2015.06.002.
doi: 10.19818/j.cnki.1671-1637.2015.06.002
Wen T, Mi HZ, Yang P, et al., 2015. An experimental study of the compaction characteristics of sulfate saline soil. Rock and Soil Mechanics, 36(07): 1945-1952. DOI: 10.16285/j.rsm.2015.07.015.
doi: 10.16285/j.rsm.2015.07.015
Xi RS, 2016. Effect of salt content on mechanical properties of saline soil. Railway Architecture, (10): 86-88. DOI: 10.3969/j.issn.1003-1995.2016.10.23.
doi: 10.3969/j.issn.1003-1995.2016.10.23
Yang XH, Wang YW, Zhang SS, 2016. Research on changing rules of salt expansion rate of salty soil with water content based on regulation factor. China Journal of Highway and Transport, 29(10): 12-19. DOI: 10.19721/j.cnki.1001-7372.2016.10.002.
doi: 10.19721/j.cnki.1001-7372.2016.10.002
Yang P, Cao YP, Zhu YP, et al., 2019. Model test of salt-frost heaving limit depth of coarse-grained sulphate saline soil. Engineering Science and Technology, 51(01): 129-136. DOI: 10.15961/j.jsuese.201800098.
doi: 10.15961/j.jsuese.201800098
Yue HM, Huang JM, Wen T, et al., 2017. Experimental study of foundation treatment of sulphate saline sandy soil using heavy cover replacement technique. Rock and Soil Mechanics, 38(02): 471-478 +486. DOI: 10.16285/j.rsm.2017.02.021.
doi: 10.16285/j.rsm.2017.02.021
Zhang SS, Wang YW, Yang XH, et al., 2015. Simplified prediction model of salt expansion rate for gravel sulfite saline soil. China Journal of Highway and Transport, 28(11): 1-7+14. DOI: 10.19721/j.cnki.1001-7372.2015.11.001.
doi: 10.19721/j.cnki.1001-7372.2015.11.001
Zhang SS, Xie SJ, Yang XH, et al., 2019. Action mechanism of coarse particle sulfate soil subgrade modified by volcanic ash. Chinese Journal of Geotechnical Engineering, 41(03): 588-594. DOI: 10.11779/CJGE201903023.
doi: 10.11779/CJGE201903023
Zhang TW, Deng YF, Wu ZL, et al., 2018. Engineering behavior and constitutive model of artificial soft clay considering pore water salinity effect. Chinese Journal of Geotechnical Engineering, 40(09): 1690-1697. DOI: 10.11779/CJGE201809016.
doi: 10.11779/CJGE201809016
Zhang XM, Lu YZ, Dong Q, et al., 2015. Evaluating compaction quality of soil-rock mixture based on theory of elastic waves. Journal of Geotechnical Engineering, 37(11): 2051-2057. DOI: 10.11779/CJGE201511016.
doi: 10.11779/CJGE201511016
Zhao DA, Yu YY, Ma HM, et al., 2014. Secondary salinization of subgrade of southern Xinjiang Railway. Chinese Journal of Geotechnical Engineering, 36(04): 745-751. DOI: 10.11779/CJGE201404020.
doi: 10.11779/CJGE201404020
[1] YuanMing Lai,ZheMin You,Jing Zhang. Constitutive models and salt migration mechanisms of saline frozen soil and the-state-of-the-practice countermeasures in cold regions [J]. Sciences in Cold and Arid Regions, 2021, 13(1): 1-17.
[2] Tao Wen,Sai Ying,FengXi Zhou. Calculation of salt-frost heave of sulfate saline soil due to long-term freeze-thaw cycles [J]. Sciences in Cold and Arid Regions, 2020, 12(5): 284-294.
[3] Yu Zhang, JianKun Liu, JianHong Fang, AnHua Xu. Deformation properties of chloride saline soil under action of a low-temperature environment and different loads [J]. Sciences in Cold and Arid Regions, 2017, 9(3): 307-311.
[4] Xin Zhou, Qing Wang, XueFei Zhang, TianWen Yu, XuDong Zhang. Basic properties of saline soil in Da'an, western Jilin, China [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 568-572.
[5] TianWen Yu, Qing Wang, XuDong Zhang, Xin Zhou, Gang Wang, CenCen Niu. Experimental study on grain size and soluble salt of saline soil in western Jilin Province, China [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 573-578.
[6] Yu Zhang, JianHong Fang, JianKun Liu, AnHua Xu. Experimental research on physical properties of saline soil subgrade filler in Chaerhan region [J]. Sciences in Cold and Arid Regions, 2015, 7(3): 212-215.
[7] Yu Zhang, JianHong Fang, JianKun Liu, AnHua Xu. Research on the distribution of saline soil along the Chaerhan-Golmud Highway, northwestern China [J]. Sciences in Cold and Arid Regions, 2015, 7(2): 189-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!