Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (2): 167-176.doi: 10.3724/SP.J.1226.2021.20095

Previous Articles    

Possible controlling factors in the development of seasonal sand wedges on the Ordos Plateau, North China

Hugh M. French1,Jef Vandenberghe2(),HuiJun Jin3,4(),RuiXia He4   

  1. 1.Departments of Geography and Earth Sciences, University of Ottawa, Ontario, Canada, Department of Geography, University of Victoria, British Columbia, Canada
    2.Institute of Earth Sciences, Vrije Universiteit Amsterdam, The Netherlands
    3.School of Civil Engineering, Institute of Cold-Regions Engineering, Science and Technology, Northeast-China Observatory and Research-Station of Permafrost Geo-Environment-Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
    4.State Key Laboratory of Frozen Soils Engineering and Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
  • Received:2020-11-03 Accepted:2021-04-02 Online:2021-04-30 Published:2021-05-11
  • Contact: Jef Vandenberghe,HuiJun Jin E-mail:jef.vandenberghe@vu.nl;hjjin@nefu.edu.cn
  • About author:Deceased

Abstract:

Wedge-like structures filled with silty sand penetrate Quaternary fluvial and aeolian sediments and, in places, Tertiary bedrock on the Ordos Plateau, North China. The wedges reflect thermal contraction cracking of either permafrost or seasonal frost during the Late Pleistocene and early Holocene. Wedges of about 1 m in depth form polygonal nets of 2-3 m in diameter (type B). They contrast with wedges of 3-4 m in depth that form polygons of 10-15 m in diameter (type A). This review focuses upon the highly variable size of the inferred polygon nets and discusses the problem of differentiating between seasonally and perennially frozen ground, or between seasonal frost and permafrost.

Key words: frozen ground, sand-wedge casts, frost fissures, thermal contraction cracking, seasonal frost cracking, desiccation cracking

Figure 1

Map showing (a) location of the Ordos Plateau, Inner Mongolia, China, and (b) location of the city of Dongsheng (Ordos City), northern Ordos1) The extents of modern permafrost that probably existed during the local Last Glacial Maximum are after Zhao et al. (2014) and Jin et al. (2019, 2020); 2) The proposed boundary of the continuous and discontinuous permafrost zones of the Last Permafrost Maximum (LPM) is indicated in Figure 6b in green; 3) The proposed boundary of discontinuous permafrost and deep seasonal frost, as determined by Vandenberghe et al. (2019, 2020), is also indicated in Figure 6b in red, and; 4) The official review code for this map is GS(2020)4634"

Figure 2

Examples of Late Pleistocene sand wedges of type A in the vicinity of Dongsheng, Ordos Plateaua) A typical wedge, viewed in a near-true section, is about 0.4 to 0.5 m wide near the surface and penetrates about 2.8 m below the ground surface. The upper 1 m of the near-surface sediments is evidently frost-disturbed. The stratigraphic contact at a depth of about 1.0 m probably indicates the position of the paleo-permafrost table (stippled line), which is also characterized by the presence of an indurated and oxidized layer ("fragipan"). The yellowish-brown fill in the wedge is the youngest aeolian sand (at the top of the section in Figure 4), mixed with a few pebbles derived from the desert pavement associated with the aeolian activity (the spade shown is 60 cm long); b) An exposure of weathered and dipping Tertiary-age sandstone is penetrated by two sand wedges, one of which is exemplified in the photo. The cracking extends 2 to 4 m into the underlying bedrock. Here, the wedges are viewed in an oblique section. The upper 1.5 m of the wedges represents the younger type B wedge. The fill of the wedges is identical as in photo 2a (the piece of paper is 30 cm long). Note the clear, upturned strata at the right and left sides of the wedge above the piece of paper. Both photos by Jef Vandenberghe on 17 June 2015"

Figure 3

Examples of Early Holocene seasonal-frost cracks (wedges) of type B in the vicinity of Dongsheng, Ordos Plateaua) A silt wedge, about 1.5 m deep. The width is variable, remarkably wider near the surface but abruptly changing to about 15 cm at depths below 60 cm. The spade is 150 cm long. Note the clear upturning structures at the right side of the wedge. Photo by Jef Vandenberghe; b) A silt wedge, viewed in an oblique section, abruptly terminates at a depth of about 100 cm. Photo by Hugh M. French on 16 June 2015"

Figure 4

Schematic diagram illustrating the near-surface lithostratigraphy and inferred paleo-cryostratigraphy observed in the Dongsheng (Ordos City) region (See also Vandenberghe et al., 2019 for more details)1) Large sand wedges (type A) penetrate units 1-4 and are indicative of permafrost. OSL-dating of such large wedges points to an LPM age (23-19 ka B.P.) (Vandenberghe et al. 2019). Large amplitude cryoturbations in unit 2 are probably indicative of an earlier period of permafrost. A desert pavement truncates the cryoturbations; 2) Smaller wedges (type B) are indicative of seasonal frost and/or desiccation cracking. They appear to be slightly younger than the type A wedges and date from LPM to early Holocene; 3) Sedimentary units are: a) Units 0-1: fine-grained aeolian sand; b) Units 2-4: medium-to-coarse sand and gravel"

Figure 5

Part of a polygon network of type B wedges formed during the early Holocene on the Ordos Plateau, China. The polygon network was excavated on June 17, 2015. The rod is subdivided into alternating yellow and white sections of 1 m long. Photo by Jef Vandenberghe"

Andrieux E, Bertran P, Lenoble A, et al., 2016. Spatial analysis of the French Pleistocene permafrost by a GIS database. Permafrost and Periglacial Processess, 27: 17-30. DOI: 10. 1002/ppp.1856.
doi: 10. 1002/ppp.1856
Berg TE, Black RF, 1966. Preliminary measurements of growth of nonsorted polygons, Victoria land, Antarctica. Antarctic Research (Series B), 5: 61-108. DOI: 10.1029/AR008p0061.
doi: 10.1029/AR008p0061
Berthling I, Etzelmuller B, 2011. The concept of cryo-conditioning in landscape evolution. Quaternary Research, 75: 378-384. DOI: 10.1016/j.yqres.2010.12.011.
doi: 10.1016/j.yqres.2010.12.011
Bertran P, Andrieux E, Antoine P, et al., 2014. Distribution and chronology of Pleistocene permafrost features in France: database and first results. Boreas, 43: 699-711. DOI: 10. 1111/bor.12025.
doi: 10. 1111/bor.12025
Black RF, 1976. Periglacial features indicative of permafrost: ice and soil wedge. Quaternary Research, 6(1): 3-26. DOI: 10.1016/0033-5894(76)90037-5
doi: 10.1016/0033-5894(76)90037-5
Bordoloi S, Ni J, Ng CWW, 2020. Soil desiccation cracking and its characterization in vegetated soil: A perspective review. Science of the Total Environment, 729: 138760. DOI: 10.1016/j.scitotenv.2020.138760.
doi: 10.1016/j.scitotenv.2020.138760
Cui Z, Yang JL, Zhao L, et al., 2004. Discovery of a large area of ice-wedge networks in Ordos: Implications for the southern boundary of permafrost in the north of China as well as for the environment in the latest 20 ka BP. Chinese Science Bulletin, 49: 1177-1184. DOI: 10.1360/03wd0211.
doi: 10.1360/03wd0211
Cui ZJ, Xie YY, 1984. On the southern boundary of permafrost and periglacial environment during the late period of Late Pleistocene in north and northeast China. Acta Geologica Sinica, 2: 165-177. (in Chinese).
Cui ZJ, Zhao L, Vandenberghe J, et al., 2002. Discovery of ice wedge and sand-wedge networks in Inner Mongolia and Shanxi Province and their environmental significance. Journal of Glaciology and Geocryology, 24(6): 708-717. (in Chinese)
Dong G, Gao S, Li B, et al., 1985. Relict periglacial phenomena on the Ordos Plateau since the Late Pleistocene and their implications for climate strata. Geographical Research, 4(1): 1-11. (in Chinese).
Dostovalov BN, Popov AL, 1966. Polygonal systems of ice wedges and conditions of their development. In: Proceedings, International Conference on Permafrost, National Academy of Sciences, Washington D.C.
-National Research Council Canandian Publication No., 1287: 102-105.
Fisher TG, 1996. Sand-wedge and ventifact palaeoenvironmental indicators in North-West Saskatchewan, Canada, 11 ka to 9.9 ka BP. Permafrost and Periglacial Processes, 7: 391-408. DOI: 10.1002/(SICI)1099-1530(199610)7:43.0.CO;2-W.
doi: 10.1002/(SICI)1099-1530(199610)7:43.0.CO;2-W
French HM, 1976. The Periglacial Environment, 1st ed. Essex: Longman.
French HM, 2007. The Periglacial Environment, 3rd ed. Oxford: John Wiley &Sons.
French HM, 2018. The Periglacial Environment, 4th ed. Oxford: Wiley-Blackwell.
Hales TC, Roering JJ, 2007. Climatic controls on frost cracking and implications for the evolution of bedrock landscapes. Journal of Geophysical Research: Earth Surface, 112: F02033. DOI: 10.1029/2006JF000616.
doi: 10.1029/2006JF000616
Harris SA, Jin HJ, 2012. Tessellons and "sand wedges" on the Qinghai-Tibet Plateau and their palaeoenvironmental implications. In: Hinkel KM (ed.). In:Proceedings of the Tenth International Permafrost Confernce, Salekhard, Russia, June25-29, 2012: Volume 1, International Contribution: 149-153.
Online: http:.
He RX, Jin HJ, French HM, et al., 2020. Cryogenic wedges and cryoturbations on the Ordos Plateau in North China since 50 ka BP and their paleo-environmental implications. Permafrost and Periglacial Processes, Special Issue: 1-17. DOI: 10.1002/ppp.2084.
doi: 10.1002/ppp.2084
Jahn A, 1975. Problems of the Periglacial Zone. PWN Polish Scientific Publishers, Warsaw.
Jahn A, 1960. Some remarks on evolution of slopes in Spitsbergen. Zeitschrift für Geomorphologie, : 49-58.
Jin HJ, Chang XL, He RX, et al., 2016. Evolution of permafrost and periglacial environments in Northeast China since the Last Glaciation Maximum. Sciences in Cold and Arid Regions, 8(4): 269-296. DOI: 10.3724/SP.J.1226.2016.00269.
doi: 10.3724/SP.J.1226.2016.00269
Jin HJ, Chang X, Wang S, 2007. Evolution of permafrost on the Qinghai-Xizang (Tibet) Plateau since the end of the late Pleistocene. Journal of Geophysical Research, 112: F02S09. DOI: 10.1029/2006JF000521.
doi: 10.1029/2006JF000521
Jin HJ, Jin X, He R, et al., 2019. Evolution of permafrost in China during the last 20 ka. Science in China (Series D, Earth Sciences), 62(8): 1181-1192. DOI: 10.1007/s11430-018-9272-0.
doi: 10.1007/s11430-018-9272-0
Jin HJ, Vandenberghe J, Luo D, et al., 2020. Quaternary permafrost in China: A preliminary framework and some discussions. Quaternary, 3: 32. DOI: 10.3390/quat3040032.
doi: 10.3390/quat3040032
Karte J, 1979. Räumliche Abgrenzung und regionale Differenzierung des Periglaziärs. Bochumer Geografische Arbeiten, 35: 1-211.
Kerfoot DE, 1972. Thermal contraction cracks in an arctic tundra environment. Arctic, 25(2): 142-150. .
Lachenbruch AH, 1962. Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost. Geological Society of America, Special Paper 70. DOI: 10.3189/s0022143000028902
doi: 10.3189/s0022143000028902
Leffingwell E de K, 1915. Ground ice-wedges. The dominant form of ground ice on the north coast of Alaska. Journal of Geology, 23: 635-654.
Li B, David DZ, Jin H, et al., 2000. Palaeo-monsoon activities of Mu Us Desert, China since 150 ka—A study of the stratigraphic sequences of the Milanggouwan section, Salawusu River area. Palaeogeography, Palaeoclimatology and Palaeoecology, 162(1-2): 1-16. DOI: 10.1016/S0031-0182(00)00101-2.
doi: 10.1016/S0031-0182(00)00101-2
Li B, Jin HJ, Zhu Y, et al., 2004. The Quaternary lithostrata in Salawusu River Valley and their geochronology. Acta Sedimentol Sinica, 22(4): 676-682. DOI :10.14027/j.cnki.cjxb.2004.04.019. (in Chinese)
doi: 10.14027/j.cnki.cjxb.2004.04.019.
Lu Y, Liu SH, 2017. Cracking in an expansive soil under freeze-thaw cycles. Sciences in Cold and Arid Regions, 9: 392-397. DOI: 10.3724/SP.J.1226.2017.00392.
doi: 10.3724/SP.J.1226.2017.00392
Lu Y, Liu SH, Weng L, et al., 2016. Fractal analysis of cracking in a clayey soil under freeze-thaw cycles. Engineering Geology, 208: 93-99. DOI: 10.1016/j.enggeo.2016.04.023.
doi: 10.1016/j.enggeo.2016.04.023
Lusch DP, Stanley KE, Schaetzl RJ, et al., 2009. Characterization and mapping of patterned ground in the Saginaw Lowlands, Michigan: possible evidence for Late-Wisconsin permafrost. Annals of Association of American Geographers, 99(3): 445-466. DOI:10.1080/00045600902931629.
doi: 10.1080/00045600902931629
Mackay JR, 1977. The widths of ice wedges. Geological Survey of Canada, Paper 77-1A: 43-44.
Meyer H, Opel T, Laepple T, AYu Dereviagin, Hoffmann K, Werner, 2015. Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nature Geoscience, 8: 122-125. DOI: 10.1038/NGEO02349.
doi: 10.1038/NGEO02349
Miller GA, Hassanikhah A, Varsei M, 2015. Desiccation crack depth and tensile strength in compacted soil. In: Unsaturated Soil Mechanics-from Theory to Practice: Proceedings of the 6th Asia and Pacific Conference on Unsaturated Soils. DOI: 10.1201/b19248-10.
doi: 10.1201/b19248-10
Mol J, Vandenberghe J, Kasse K, et al., 1993. Periglacial microjointing and faulting in Weichselian fluvio-aeolian deposits. Journal of Quaternary Science, 8: 15-30. DOI: 10.1002/jqs.3390080103.
doi: 10.1002/jqs.3390080103
Murton JB, Kolstrup E, 2003. Ice-wedge casts as indicators of palaeotemperatures: precise proxy or wishful thinking?Progress in Physical Geography: Earth and Environment, 27(2): 155-170. DOI: 10.1191/0309133303pp365ra.
doi: 10.1191/0309133303pp365ra
Murton JB, Worsley P, Gozdzik J, 2000. Sand veins and wedges in cold aeolian environments. Quaternary Science Reviews, 19: 899-922. DOI: 10.1016/S0277-3791(99)00045-1.
doi: 10.1016/S0277-3791(99)00045-1
Owen LA, Richards B, Rhodes EJ, et al., 1998. Relic permafrost structures in the Gobi of Mongolia: age and significance. Journal of Quaternary Science, 13: 539-547. DOI: 10.1002/(SICI)1099-1417(1998110)13:63.3.CO;2-E.
doi: 10.1002/(SICI)1099-1417(1998110)13:63.3.CO;2-E
Pan B, Hu Z, Wen Y, et al., 2010. The approximate age of the planation surface and the incision of the Yellow River. Palaeogeography, Palaeoclimatology and Palaeoecology, 356-357: 54-61. DOI: 10.1016/j.palaeo.2010.04.011.
doi: 10.1016/j.palaeo.2010.04.011
Péron H, Hueckel T, Laloui L, et al., 2009b. Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification. Canadian Geotechnical Journal, 46(10): 1177-1201. DOI: 10.1139/T09-054.
doi: 10.1139/T09-054
Péron H, Laloui L, Hueckel T, et al., 2009a. Desiccation cracking of soils. European Journal of Environmental and Civil Engineering, 13(7-8): 869-888. DOI: 10.1080/19648189. 2009.9693159.
doi: 10.1080/19648189. 2009.9693159
Péwé TL, 1959. Sand-wedge polygons (tessellations) in the McMurdo Sound Region, Antarctica—A progress report. American Journal of Science, 257: 545-552.
Péwé TL, 1966. Paleoclimatic significance of fossil ice wedges. Biuletyn Peryglacjalny, 15: 65-73.
Price NJ, Cosgrove JW, 1990. Analysis of Geological Structures. Cambridge: Cambridge University Press.
Romanovskii NN, 1977. Formation of Polygonal-wedge Structures. Novosiberia, USSR: Nauka (Science) Press, pp. 70-85. (in Russian)
Romanovskii NN, 1985. Distribution of Recently Active Ice and soil Wedges in the USSR. In: Field and Theory-Lectures in Geocryology. Vancouver, BC: University of British Columbia Press, pp. 154-165.
Shi B, Chen S, Han H, et al., 2014. Expansive soil crack depth under cumulative damage. The Scientific World Journal, (12): 498437. DOI: 10.1155/2014/498437.
doi: 10.1155/2014/498437
Shur Y, Hinkel KM, Nelson FE, 2005. The transient layer: implications for geocryology and climate-change science. Permafrost and Periglacial Processes, 16: 5-18. DOI: 10.1002/ppp.518.
doi: 10.1002/ppp.518
Svensson H, 2008. Recent frost fissuring in a coastal area of southwestern Sweden. Norsk Geografisk Tidsskrift, 42(4): 271-277. DOI: 10.1080/00291958808552210.
doi: 10.1080/00291958808552210
Tang C, Shi B, Liu C, et al., 2008. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils. Engeering Geology, 101(3-4): 204-217. DOI: 10. 1016/j.enggeo.2008.05.005.
doi: 10. 1016/j.enggeo.2008.05.005
Vallejo LE, 2009. Fractal analysis of temperature-induced cracking in clays and rocks. Géotechnique, 59: 283-286. DOI: 10.1680/geot.2009.59.3.283.
doi: 10.1680/geot.2009.59.3.283
Vandenberghe J, 1983. Some periglacial phenomena and their stratigraphical position in Weichselian deposits in the Netherlands. Polarforschung, 53(2): 97-107.
Vandenberghe J, Cui Z, Zhao L, et al., 2004. Thermal-contraction crack networks as evidence for Late Pleistocene permafrost in Inner Mongolia. Permafrost Periglacial Processes, 15: 21-29. DOI: 10.1002/ppp.476.
doi: 10.1002/ppp.476
Vandenberghe J, French H, Jin HJ, et al., 2019. The extent of permafrost during the Last Permafrost Maximum (LPM) on the Ordos Plateau, north China. Quaternary Science Reviews, 214: 87-97. DOI: 10.1016/j.quascirev.2019.04.019.
doi: 10.1016/j.quascirev.2019.04.019
Vandenberghe J, French H, Jin H, et al., 2020. The impact of latitude and altitude on the extent of permafrost during the Last Permafrost Maximum (LPM) in North China. Geomorphology, 350: 106909. DOI: 10.1016/j.geomorph. 2019. 106909.
doi: 10.1016/j.geomorph. 2019. 106909
Vasil'chuk Y, Vasil'chuk AC, 2014. Spatial distribution of mean winter air temperatures in Siberian permafrost at 20-18 Ka BP using oxygen isotope data. Boreas, 43: 678-687. DOI: 10.1111/bor.12033.
doi: 10.1111/bor.12033
Wang N, Zhao Q, Li J, et al., 2003. The sand wedges of the last ice age in the Hexi Corridor, China: paleoclimatic interpretation. Geomorphology, 51(4): 313-320. DOI: 10.1016/S0169-555X(02)00243-X.
doi: 10.1016/S0169-555X(02)00243-X
Wang P, Zhou G, 2018. Frost-heaving pressure in geotechnical engineering materials during freezing process. International Journal of Mining Science and Technology, 28: 287-296. DOI: 10.1016/J.IJMST.2017.06.003.
doi: 10.1016/J.IJMST.2017.06.003
Washburn AL, 1956. Classification of patterned ground and a review of suggested origins. Geolological Society of America Bulletin, 67: 823-866.
Washburn AL, 1979. Geocryology: A Survey of Periglacial Processes and Environments. London: Edward Arnold.
Watanabe T, Matsuoka N, Christiansen HH, 2013. Ice- and soil-wedge dynamics in the Kapp Linné area, Svalbard, investigated by two- and three-dimensional GPR and ground thermal and acceleration regimes. Permafrost and Periglacial Processes, 24: 39-55. DOI:10.1002/ppp.1767.
doi: 10.1002/ppp.1767
Wolfe SA, Morse PD, Neudorf CM, et al., 2018. Contemporary sand-wedge development in seasonally-frozen ground and paleoenvironmental implications. Geomorphology, 308: 215-229. DOI: 10.1016/j.geomorph.2018.02.015.
doi: 10.1016/j.geomorph.2018.02.015
Yan Y,1982. Involution in Salawusu Series. Journal of Glaciology and Geocryology, 4(3): 73-76. (in Chinese)
Yang J, Sun J, Li S, et al., 1983. Ice wedge casts and sand wedges and natural environments in the Datong Basin, Shanxi Province, China during the Late Pleistocene. Chinese Geographical Science, 3(4): 339-344. (in Chinese)
Yershov D, 1990. Obshcheya Geokriologiya. Nedra, Moscow: 1990 (English translation by Williams PJ, General Geocryology: Cambridge: Cambridge University Press, 1988).
Yin P, Qi S, Vanapalli SK, 2016. A framework for predicting the depth of desiccation-induced cracks in clayey soils. In:Proceedings: 69th Canadian Geotechnical Conference at Vancouver, Canada. .
Yue L, Li J, Zheng G, Li Z, 2007. Evolution of the Ordos Plateau and environmental effects. Science in China (Series D: Earth Sciences), 50: 19-26. DOI: 10.1007/s11430-007-6013-2.
doi: 10.1007/s11430-007-6013-2
Zhao L, Jin H, Li C, et al., 2014. The extent of permafrost in China during the local Last Glacial Maximum (LLGM). Boreas, 43: 688-698. DOI: 10.1111/bor.12049.
doi: 10.1111/bor.12049
Zykina VS, Zykin VS, Volvach AO, et al., 2017. Upper Quaternary deposits of the Nadym Ob area: stratigraphy, cryogenic forms, and deposition environments. Earth's Cryosphere, 21(6): 12-20. DOI: 10.21782/EC1560-7496-2017-6(12-20).
doi: 10.21782/EC1560-7496-2017-6(12-20
[1] Di Ma,SiQiong Luo,DongLin Guo,ShiHua Lyu,XianHong Meng,BoLi Chen,LiHui Luo. Simulated effect of soil freeze-thaw process on surface hydrologic and thermal fluxes in frozen ground region of the Northern Hemisphere [J]. Sciences in Cold and Arid Regions, 2021, 13(1): 18-29.
[2] PengFei Lin,ZhiBin He,Jun Du,LongFei Chen,Xi Zhu,QuanYan Tian. Processes of runoff in seasonally-frozen ground about a forested catchment of semiarid mountains [J]. Sciences in Cold and Arid Regions, 2020, 12(5): 272-283.
[3] Xi Chen, JianKun Liu, Nan Xie, HuiJing Sun. Probabilistic analysis of embankment slope stability in frozen ground regions based on random finite element method [J]. Sciences in Cold and Arid Regions, 2015, 7(4): 354-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!